AI实践哪家强?来 AICon, 解锁技术前沿,探寻产业新机! 了解详情
写点什么

深度增强学习方向论文整理

  • 2019-11-29
  • 本文字数:5536 字

    阅读完需:约 18 分钟

深度增强学习方向论文整理

一. 开山鼻祖 DQN

  1. Playing Atari with Deep Reinforcement Learning,V. Mnih et al., NIPS Workshop, 2013.

  2. Human-level control through deep reinforcement learning, V. Mnih et al., Nature, 2015.

二. DQN 的各种改进版本(侧重于算法上的改进)

  1. Dueling Network Architectures for Deep Reinforcement Learning. Z. Wang et al., arXiv, 2015.

  2. Prioritized Experience Replay, T. Schaul et al., ICLR, 2016.

  3. Deep Reinforcement Learning with Double Q-learning, H. van Hasselt et al., arXiv, 2015.

  4. Increasing the Action Gap: New Operators for Reinforcement Learning, M. G. Bellemare et al., AAAI, 2016.

  5. Dynamic Frame skip Deep Q Network, A. S. Lakshminarayanan et al., IJCAI Deep RL Workshop, 2016.

  6. Deep Exploration via Bootstrapped DQN, I. Osband et al., arXiv, 2016.

  7. How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies, V. François-Lavet et al., NIPS Workshop, 2015.

  8. Learning functions across many orders of magnitudes,H Van Hasselt,A Guez,M Hessel,D Silver

  9. Massively Parallel Methods for Deep Reinforcement Learning, A. Nair et al., ICML Workshop, 2015.

  10. State of the Art Control of Atari Games using shallow reinforcement learning

  11. Learning to Play in a Day: Faster Deep Reinforcement Learning by Optimality Tightening(11.13 更新)

  12. Deep Reinforcement Learning with Averaged Target DQN(11.14 更新)

  13. Safe and Efficient Off-Policy Reinforcement Learning(12.20 更新)

  14. The Predictron: End-To-End Learning and Planning (1.3 更新)

三. DQN 的各种改进版本(侧重于模型的改进)

  1. Deep Recurrent Q-Learning for Partially Observable MDPs, M. Hausknecht and P. Stone, arXiv, 2015.

  2. Deep Attention Recurrent Q-Network

  3. Control of Memory, Active Perception, and Action in Minecraft, J. Oh et al., ICML, 2016.

  4. Progressive Neural Networks

  5. Language Understanding for Text-based Games Using Deep Reinforcement Learning

  6. Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks

  7. Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation

  8. Recurrent Reinforcement Learning: A Hybrid Approach

  9. Value Iteration Networks, NIPS, 2016 (12.20 更新)

  10. MazeBase:A sandbox for learning from games(12.20 更新)

  11. Strategic Attentive Writer for Learning Macro-Actions(12.20 更新)

四. 基于策略梯度的深度强化学习

深度策略梯度:


  1. End-to-End Training of Deep Visuomotor Policies

  2. Learning Deep Control Policies for Autonomous Aerial Vehicles with MPC-Guided Policy Search

  3. Trust Region Policy Optimization


深度行动者评论家算法:


  1. Deterministic Policy Gradient Algorithms

  2. Continuous control with deep reinforcement learning

  3. High-Dimensional Continuous Control Using Using Generalized Advantage Estimation

  4. Compatible Value Gradients for Reinforcement Learning of Continuous Deep Policies

  5. Deep Reinforcement Learning in Parameterized Action Space

  6. Memory-based control with recurrent neural networks

  7. Terrain-adaptive locomotion skills using deep reinforcement learning

  8. Compatible Value Gradients for Reinforcement Learning of Continuous Deep Policies

  9. SAMPLE EFFICIENT ACTOR-CRITIC WITH EXPERIENCE REPLAY(11.13 更新)


搜索与监督:


  1. End-to-End Training of Deep Visuomotor Policies

  2. Interactive Control of Diverse Complex Characters with Neural Networks


连续动作空间下探索改进:


  1. Curiosity-driven Exploration in DRL via Bayesian Neuarl Networks


结合策略梯度和 Q 学习:


  1. Q-PROP: SAMPLE-EFFICIENT POLICY GRADIENT WITH AN OFF-POLICY CRITIC(11.13 更新)

  2. PGQ: COMBINING POLICY GRADIENT AND Q-LEARNING(11.13 更新)


其它策略梯度文章:


  1. Gradient Estimation Using Stochastic Computation Graphs

  2. Continuous Deep Q-Learning with Model-based Acceleration

  3. Benchmarking Deep Reinforcement Learning for Continuous Control

  4. Learning Continuous Control Policies by Stochastic Value Gradients

  5. Generalizing Skills with Semi-Supervised Reinforcement Learning(12.20 更新)

五. 分层 DRL

  1. Deep Successor Reinforcement Learning

  2. Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation

  3. Hierarchical Reinforcement Learning using Spatio-Temporal Abstractions and Deep Neural Networks

  4. Stochastic Neural Networks for Hierarchical Reinforcement Learning – Authors: Carlos Florensa, Yan Duan, Pieter Abbeel (11.14 更新)

六. DRL 中的多任务和迁移学习

  1. ADAAPT: A Deep Architecture for Adaptive Policy Transfer from Multiple Sources

  2. A Deep Hierarchical Approach to Lifelong Learning in Minecraft

  3. Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning

  4. Policy Distillation

  5. Progressive Neural Networks

  6. Universal Value Function Approximators

  7. Multi-task learning with deep model based reinforcement learning(11.14 更新)

  8. Modular Multitask Reinforcement Learning with Policy Sketches (11.14 更新)

七. 基于外部记忆模块的 DRL 模型

  1. Control of Memory, Active Perception, and Action in Minecraft

  2. Model-Free Episodic Control

八. DRL 中探索与利用问题

  1. Action-Conditional Video Prediction using Deep Networks in Atari Games

  2. Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks

  3. Deep Exploration via Bootstrapped DQN

  4. Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation

  5. Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models

  6. Unifying Count-Based Exploration and Intrinsic Motivation

  7. #Exploration: A Study of Count-Based Exploration for Deep Reinforcemen Learning(11.14 更新)

  8. Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning(11.14 更新)

  9. VIME: Variational Information Maximizing Exploration(12.20 更新)

九. 多 Agent 的 DRL

  1. Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks

  2. Multiagent Cooperation and Competition with Deep Reinforcement Learning

十. 逆向 DRL

  1. Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization

  2. Maximum Entropy Deep Inverse Reinforcement Learning

  3. Generalizing Skills with Semi-Supervised Reinforcement Learning(11.14 更新)

十一. 探索+监督学习

  1. Deep learning for real-time Atari game play using offline Monte-Carlo tree search planning

  2. Better Computer Go Player with Neural Network and Long-term Prediction

  3. Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.

十二. 异步 DRL

  1. Asynchronous Methods for Deep Reinforcement Learning

  2. Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU(11.14 更新)

十三:适用于难度较大的游戏场景

  1. Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.

  2. Strategic Attentive Writer for Learning Macro-Actions

  3. Unifying Count-Based Exploration and Intrinsic Motivation

十四:单个网络玩多个游戏

  1. Policy Distillation

  2. Universal Value Function Approximators

  3. Learning values across many orders of magnitude

十五:德州 poker

  1. Deep Reinforcement Learning from Self-Play in Imperfect-Information Games

  2. Fictitious Self-Play in Extensive-Form Games

  3. Smooth UCT search in computer poker

十六:Doom 游戏

  1. ViZDoom: A Doom-based AI Research Platform for Visual Reinforcement Learning

  2. Training Agent for First-Person Shooter Game with Actor-Critic Curriculum Learning

  3. Playing FPS Games with Deep Reinforcement Learning

  4. LEARNING TO ACT BY PREDICTING THE FUTURE(11.13 更新)

  5. Deep Reinforcement Learning From Raw Pixels in Doom(11.14 更新)

十七:大规模动作空间

  1. Deep Reinforcement Learning in Large Discrete Action Spaces

十八:参数化连续动作空间

  1. Deep Reinforcement Learning in Parameterized Action Space

十九:Deep Model

  1. Learning Visual Predictive Models of Physics for Playing Billiards

  2. J. Schmidhuber, On Learning to Think: Algorithmic Information Theory for Novel Combinations of Reinforcement Learning Controllers and Recurrent Neural World Models, arXiv, 2015. arXiv

  3. Learning Continuous Control Policies by Stochastic Value Gradients


4.Data-Efficient Learning of Feedback Policies from Image Pixels using Deep Dynamical Models


  1. Action-Conditional Video Prediction using Deep Networks in Atari Games

  2. Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models

二十:DRL 应用

机器人领域:


  1. Trust Region Policy Optimization

  2. Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control

  3. Path Integral Guided Policy Search

  4. Memory-based control with recurrent neural networks

  5. Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection

  6. Learning Deep Neural Network Policies with Continuous Memory States

  7. High-Dimensional Continuous Control Using Generalized Advantage Estimation

  8. Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization

  9. End-to-End Training of Deep Visuomotor Policies

  10. DeepMPC: Learning Deep Latent Features for Model Predictive Control

  11. Deep Visual Foresight for Planning Robot Motion

  12. Deep Reinforcement Learning for Robotic Manipulation

  13. Continuous Deep Q-Learning with Model-based Acceleration

  14. Collective Robot Reinforcement Learning with Distributed Asynchronous Guided Policy Search

  15. Asynchronous Methods for Deep Reinforcement Learning

  16. Learning Continuous Control Policies by Stochastic Value Gradients


机器翻译:


  1. Simultaneous Machine Translation using Deep Reinforcement Learning


目标定位:


  1. Active Object Localization with Deep Reinforcement Learning


目标驱动的视觉导航:


  1. Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning


自动调控参数:


  1. Using Deep Q-Learning to Control Optimization Hyperparameters


人机对话:


  1. Deep Reinforcement Learning for Dialogue Generation

  2. SimpleDS: A Simple Deep Reinforcement Learning Dialogue System

  3. Strategic Dialogue Management via Deep Reinforcement Learning

  4. Towards End-to-End Learning for Dialog State Tracking and Management using Deep Reinforcement Learning


视频预测:


  1. Action-Conditional Video Prediction using Deep Networks in Atari Games


文本到语音:


  1. WaveNet: A Generative Model for Raw Audio


文本生成:


  1. Generating Text with Deep Reinforcement Learning


文本游戏:


  1. Language Understanding for Text-based Games Using Deep Reinforcement Learning


无线电操控和信号监控:


  1. Deep Reinforcement Learning Radio Control and Signal Detection with KeRLym, a Gym RL Agent


DRL 来学习做物理实验:


  1. LEARNING TO PERFORM PHYSICS EXPERIMENTS VIA DEEP REINFORCEMENT LEARNING(11.13 更新)


DRL 加速收敛:


  1. Deep Reinforcement Learning for Accelerating the Convergence Rate(11.14 更新)


利用 DRL 来设计神经网络:


  1. Designing Neural Network Architectures using Reinforcement Learning(11.14 更新)

  2. Tuning Recurrent Neural Networks with Reinforcement Learning(11.14 更新)

  3. Neural Architecture Search with Reinforcement Learning(11.14 更新)


控制信号灯:


  1. Using a Deep Reinforcement Learning Agent for Traffic Signal Control(11.14 更新)


自动驾驶:


  1. CARMA: A Deep Reinforcement Learning Approach to Autonomous Driving(12.20 更新)

  2. Deep Reinforcement Learning for Simulated Autonomous Vehicle Control(12.20 更新)

  3. Deep Reinforcement Learning framework for Autonomous Driving(12.20 更新)

二十一:其它方向

避免危险状态:


  1. Combating Deep Reinforcement Learning’s Sisyphean Curse with Intrinsic Fear (11.14 更新)


DRL 中 On-Policy vs. Off-Policy 比较:


  1. On-Policy vs. Off-Policy Updates for Deep Reinforcement Learning(11.14 更新)


注 1:小伙伴们如果觉得论文一个个下载太麻烦,可以私信我,我打包发给你。


注 2:欢迎大家及时补充新的或者我疏漏的文献。


本文转载自 Alex-zhai 知乎账号。


原文链接:https://zhuanlan.zhihu.com/p/23600620


2019-11-29 13:463092

评论

发布
暂无评论
发现更多内容

Redis Desktop Manager for Mac(Redis桌面管理工具) 中文激活版

Rose

使用Linux管理面板1Panel管理华为云Flexus云服务器X实例

YG科技

华为云Flexus云服务器X实例的使用教程

YG科技

华为云Flexus云服务器X实例Windows系统部署一键短视频生成AI工具moneyprinter

YG科技

只要高帧率大错特错!沉浸式的游戏 才是好游戏

E科讯

华为云Flexus X实例:极速搭建个人代码仓库GitLab平台

YG科技

Magnet for mac(macOS的窗口管理软件) 中文免激活版

Rose

想入局具身智能、人形机器人领域,你必须了解的行业干货!

机器人头条

大模型 人形机器人 具身智能

一起鸿蒙吧,现在到了「绝佳时刻」

最新动态

Flexus云服务器X实例实践:部署思源笔记工具

YG科技

Flexus云服务器X实例:在Docker环境下搭建java开发环境

YG科技

Paste for Mac(剪切板工具) v4.1.2中文激活版

Rose

YouTube mac(YouTube客户端)v1.22中文激活版

Rose

Permute 3 for mac(全能媒体格式转换器)v3.11.4中文版

Rose

华为 Flexus 云服务器搭建 SamWaf 开源轻量级网站防火墙

YG科技

Alfred 4 for mac(最好用的mac效率工具) 汉化版

Rose

在人群里,看见「鲲鹏开发者」

脑极体

AI

华为云X实例部署Docker应用的性能评测优化与实践指南

YG科技

2024年做过的那些SAP项目

SAP虾客

SAP项目 2024年

华为云Flexus 云服务器 X 实例:在openEuler系统下搭建MySQL主从复制

YG科技

华为云Flexus云服务器X实例之openEuler系统下部署Discuz论坛网站

YG科技

现货量化合约跟单系统开发策略指南

区块链软件开发推广运营

交易所开发 dapp开发 链游开发 公链开发 代币开发

部署去中心化网络的AI照片管理应用PhotoPrism

YG科技

Tampermonkey for Mac(油猴Safari浏览器辅助插件) 中文版

Rose

iStat Menus 6 for Mac(最强大的macOS系统监控软件) 中文直装版

Rose

在人群里,看见「鲲鹏开发者」

白洞计划

AI

使用Flexus X实例创建FDS+Nginx服务实现图片上传功能

YG科技

AnyGo for Mac(在iPhone / iPad上轻松模拟GPS位置)

Rose

自学记录HarmonyOS Next的HMS AI API 13:语音合成与语音识别

李游Leo

鸿蒙 HarmonyOS HarmonyOS NEXT

DeFi 进入创新新时代:稳定币的崛起与美国国会对加密的支持

区块链软件开发推广运营

交易所开发 dapp开发 链游开发 公链开发 代币开发

深度增强学习方向论文整理_语言 & 开发_Alex-zhai_InfoQ精选文章