写点什么

运用计算图搭建递归神经网络(RNN)

  • 2019-09-17
  • 本文字数:5544 字

    阅读完需:约 18 分钟

运用计算图搭建递归神经网络(RNN)

继续玩我们的计算图框架。这一次我们运用计算图搭建递归神经网络(RNN,Recursive Neural Network)。RNN 处理前后有承接关系的序列状数据,例如时序数据。当然,前后的承接也不一定是时间上的,但总之是有前后关系的序列。

RNN

RNN 的思想是:网络也分步,每步以输入序列的该步数据(向量)和上一步数据(第一步没有)为输入,进行变换,得到这一步的输出(向量)。这样的话,序列的每一步就会对下一步产生影响。RNN 用变换的参数把握序列每一步之间的关系。最后一步的输出可以送给全连接层,最终用于分类或回归。RNN 有很多种,有一些复杂的变体,本文搭建一种最简单的 RNN ,它的结构是这样的:



蓝色长条表示 m 维输入向量,一共 n 个。这表示数据是长度为 n 的序列,每一步是一个 m 维向量。绿色的矩形就是每一步的变换。yi 是每一步的 k 维输出向量。每一步用 k x k 的权值矩阵 Y 去乘前一步的输出向量(第一步没有),用 k x m 的权值矩阵 W 去乘这一步的输入向量,加和后再加上 k 维偏置向量 b ,施加激活函数 ϕ (我们取 ReLU),就得到这一步的输出。


最后一步的输出也是 k 维向量,把它送给全连接层,最后施加 SoftMax 后得到各个类别的概率,再接上一个交叉熵损失就可以用来训练分类问题了。用我们的计算图框架可以这样搭建这个简单的 RNN(代码):


seq_len = 96  # 序列长度dimension = 16  # 序列每一步的向量维度hidden_dim = 12  # RNN 时间单元的输出维度
# 时间序列变量,每一步一个 dimension 维向量(Variable 节点),保存在数组 input 中input_vectors = []for i in range(seq_len): input_vectors.append(Variable(dim=(dimension, 1), init=False, trainable=False)) # 对于本步输入的权值矩阵W = Variable(dim=(hidden_dim, dimension), init=True, trainable=True)
# 对于上步输入的权值矩阵Y = Variable(dim=(hidden_dim, hidden_dim), init=True, trainable=True)
# 偏置向量b = Variable(dim=(hidden_dim, 1), init=True, trainable=True)
# 构造 RNNlast_step = None # 上一步的输出,第一步没有上一步,先将其置为 Nonefor iv in input_vectors: y = Add(MatMul(W, iv), b)
if last_step is not None: y = Add(MatMul(Y, last_step), y)
y = ReLU(y)
last_step = y

fc1 = fc(y, hidden_dim, 6, "ReLU") # 第一全连接层fc2 = fc(fc1, 6, 2, "None") # 第二全连接层
# 分类概率prob = SoftMax(fc2)
# 训练标签label = Variable((2, 1), trainable=False)
# 交叉熵损失loss = CrossEntropyWithSoftMax(fc2, label)
复制代码


这就是构造 RNN 以及交叉熵损失的计算图的代码,很简单,right ?有了计算图以及自动求导,我们只管搭建网络即可,网络的训练就交给计算图去做了。否则你可以想象,按照示意图表示的计算,推导交叉熵损失对 RNN 的各个权值矩阵和偏置的梯度是多么困难。

时间序列问题

我们构造一份数据,它包含两类时间序列,一类是方波,一类是正弦波,代码如下:


def get_sequence_data(number_of_classes=2, dimension=10, length=10, number_of_examples=1000, train_set_ratio=0.7, seed=42):    """    生成两类序列数据。    """    xx = []    xx.append(np.sin(np.arange(0, 10, 10 / length)))  # 正弦波    xx.append(np.array(signal.square(np.arange(0, 10, 10 / length))))  # 方波

data = [] for i in range(number_of_classes): x = xx[i] for j in range(number_of_examples): sequence = x + np.random.normal(0, 1.0, (dimension, len(x))) # 加入高斯噪声 label = np.array([int(i == j) for j in range(number_of_classes)])
data.append(np.c_[sequence.reshape(1, -1), label.reshape(1, -1)])
# 把各个类别的样本合在一起 data = np.concatenate(data, axis=0)
# 随机打乱样本顺序 np.random.shuffle(data)
# 计算训练样本数量 train_set_size = int(number_of_examples * train_set_ratio) # 训练集样本数量
# 将训练集和测试集、特征和标签分开 return (data[:train_set_size, :-number_of_classes], data[:train_set_size, -number_of_classes:], data[train_set_size:, :-number_of_classes], data[train_set_size:, -number_of_classes:])
复制代码


我们用这一行代码获取长度为 96 ,维度为 16 的两类(各 1000 个)序列:


# 获取两类时间序列:正弦波和方波train_x, train_y, test_x, test_y = get_sequence_data(length=seq_len, dimension=dimension)
复制代码


看一看时间序列样本,先看正弦波:



正弦波序列


这是一个正弦波时间序列样本,它包含 16 条曲线,每一条都是 sin 曲线加噪声。之所以包含 16 条曲线,因为我们的时间序列的每一步是一个 16 维向量,按时间列起来就有了 16 条正弦曲线。正弦波时间序列是我们的正样本。方波时间序列是负样本:



方波序列


一个方波时间序列先维持 +1 一段时间,变为 -1 维持一段时间,再回到 +1 ,循环往复。由于我们的高斯噪声加得较大,可以看到正弦波和方波还是有可能混淆的,但也能看出它们之间的差异。

训练

现在就用我们构造的 RNN 训练一个分类模型,分类正弦波和方波,代码如下:


from sklearn.metrics import accuracy_score
from layer import *from node import *from optimizer import *
seq_len = 96 # 序列长度dimension = 16 # 序列每一步的向量维度hidden_dim = 12 # RNN 时间单元的输出维度
# 获取两类时间序列:正弦波和方波train_x, train_y, test_x, test_y = get_sequence_data(length=seq_len, dimension=dimension)
# 时间序列变量,每一步一个 dimension 维向量(Variable 节点),保存在数组 input 中input_vectors = []for i in range(seq_len): input_vectors.append(Variable(dim=(dimension, 1), init=False, trainable=False)) # 对于本步输入的权值矩阵W = Variable(dim=(hidden_dim, dimension), init=True, trainable=True)
# 对于上步输入的权值矩阵Y = Variable(dim=(hidden_dim, hidden_dim), init=True, trainable=True)
# 偏置向量b = Variable(dim=(hidden_dim, 1), init=True, trainable=True)
# 构造 RNNlast_step = None # 上一步的输出,第一步没有上一步,先将其置为 Nonefor iv in input_vectors: y = Add(MatMul(W, iv), b)
if last_step is not None: y = Add(MatMul(Y, last_step), y)
y = ReLU(y)
last_step = y

fc1 = fc(y, hidden_dim, 6, "ReLU") # 第一全连接层fc2 = fc(fc1, 6, 2, "None") # 第二全连接层
# 分类概率prob = SoftMax(fc2)
# 训练标签label = Variable((2, 1), trainable=False)
# 交叉熵损失loss = CrossEntropyWithSoftMax(fc2, label)
# Adam 优化器optimizer = Adam(default_graph, loss, 0.005, batch_size=16)
# 训练print("start training", flush=True)for e in range(10):
for i in range(len(train_x)): x = np.mat(train_x[i, :]).reshape(dimension, seq_len) for j in range(seq_len): input_vectors[j].set_value(x[:, j]) label.set_value(np.mat(train_y[i, :]).T)
# 执行一步优化 optimizer.one_step()
if i > 1 and (i + 1) % 100 == 0:
# 在测试集上评估模型正确率 probs = [] losses = [] for j in range(len(test_x)): # x = test_x[j, :].reshape(dimension, seq_len) x = np.mat(test_x[j, :]).reshape(dimension, seq_len) for k in range(seq_len): input_vectors[k].set_value(x[:, k]) label.set_value(np.mat(test_y[j, :]).T)
# 前向传播计算概率 prob.forward() probs.append(prob.value.A1)
# 计算损失值 loss.forward() losses.append(loss.value[0, 0])
# print("test instance: {:d}".format(j))
# 取概率最大的类别为预测类别 pred = np.argmax(np.array(probs), axis=1) truth = np.argmax(test_y, axis=1) accuracy = accuracy_score(truth, pred)
default_graph.draw() print("epoch: {:d}, iter: {:d}, loss: {:.3f}, accuracy: {:.2f}%".format(e + 1, i + 1, np.mean(losses), accuracy * 100), flush=True)
复制代码


训练 10 个 epoch 后,测试集上的正确率达到了 99% :


epoch: 1, iter: 100, loss: 0.693, accuracy: 51.08%epoch: 1, iter: 200, loss: 0.692, accuracy: 51.08%epoch: 1, iter: 300, loss: 0.677, accuracy: 78.31%epoch: 1, iter: 400, loss: 0.573, accuracy: 49.31%epoch: 1, iter: 500, loss: 0.520, accuracy: 53.92%epoch: 1, iter: 600, loss: 0.599, accuracy: 97.08%epoch: 1, iter: 700, loss: 0.617, accuracy: 99.00%epoch: 2, iter: 100, loss: 0.601, accuracy: 94.46%epoch: 2, iter: 200, loss: 0.579, accuracy: 82.08%epoch: 2, iter: 300, loss: 0.558, accuracy: 76.15%epoch: 2, iter: 400, loss: 0.531, accuracy: 67.85%epoch: 2, iter: 500, loss: 0.507, accuracy: 63.77%epoch: 2, iter: 600, loss: 0.493, accuracy: 61.15%epoch: 2, iter: 700, loss: 0.479, accuracy: 62.23%epoch: 3, iter: 100, loss: 0.443, accuracy: 69.92%epoch: 3, iter: 200, loss: 0.393, accuracy: 85.85%epoch: 3, iter: 300, loss: 0.365, accuracy: 97.69%epoch: 3, iter: 400, loss: 0.284, accuracy: 95.08%epoch: 3, iter: 500, loss: 0.199, accuracy: 95.69%epoch: 3, iter: 600, loss: 0.490, accuracy: 80.62%epoch: 3, iter: 700, loss: 0.264, accuracy: 94.31%epoch: 4, iter: 100, loss: 0.320, accuracy: 83.46%epoch: 4, iter: 200, loss: 0.333, accuracy: 80.92%epoch: 4, iter: 300, loss: 0.276, accuracy: 90.15%epoch: 4, iter: 400, loss: 0.242, accuracy: 95.00%epoch: 4, iter: 500, loss: 0.217, accuracy: 96.38%epoch: 4, iter: 600, loss: 0.191, accuracy: 95.31%epoch: 4, iter: 700, loss: 0.167, accuracy: 94.00%epoch: 5, iter: 100, loss: 0.142, accuracy: 94.62%epoch: 5, iter: 200, loss: 0.111, accuracy: 96.85%epoch: 5, iter: 300, loss: 0.116, accuracy: 96.85%epoch: 5, iter: 400, loss: 0.080, accuracy: 96.77%epoch: 5, iter: 500, loss: 0.059, accuracy: 98.54%epoch: 5, iter: 600, loss: 0.054, accuracy: 98.54%epoch: 5, iter: 700, loss: 0.042, accuracy: 99.00%epoch: 6, iter: 100, loss: 0.047, accuracy: 98.46%epoch: 6, iter: 200, loss: 0.049, accuracy: 98.08%epoch: 6, iter: 300, loss: 0.030, accuracy: 99.15%epoch: 6, iter: 400, loss: 0.029, accuracy: 99.23%epoch: 6, iter: 500, loss: 0.028, accuracy: 99.08%epoch: 6, iter: 600, loss: 0.029, accuracy: 99.08%epoch: 6, iter: 700, loss: 0.024, accuracy: 99.15%epoch: 7, iter: 100, loss: 0.023, accuracy: 99.15%epoch: 7, iter: 200, loss: 0.031, accuracy: 98.85%epoch: 7, iter: 300, loss: 0.023, accuracy: 99.46%epoch: 7, iter: 400, loss: 0.022, accuracy: 99.54%epoch: 7, iter: 500, loss: 0.022, accuracy: 99.38%epoch: 7, iter: 600, loss: 0.027, accuracy: 98.77%epoch: 7, iter: 700, loss: 0.019, accuracy: 99.46%epoch: 8, iter: 100, loss: 0.018, accuracy: 99.54%epoch: 8, iter: 200, loss: 0.018, accuracy: 99.46%epoch: 8, iter: 300, loss: 0.018, accuracy: 99.54%epoch: 8, iter: 400, loss: 0.018, accuracy: 99.62%epoch: 8, iter: 500, loss: 0.017, accuracy: 99.54%epoch: 8, iter: 600, loss: 0.026, accuracy: 99.00%epoch: 8, iter: 700, loss: 0.021, accuracy: 99.23%epoch: 9, iter: 100, loss: 0.017, accuracy: 99.62%epoch: 9, iter: 200, loss: 0.016, accuracy: 99.54%epoch: 9, iter: 300, loss: 0.015, accuracy: 99.54%epoch: 9, iter: 400, loss: 0.014, accuracy: 99.69%epoch: 9, iter: 500, loss: 0.014, accuracy: 99.62%epoch: 9, iter: 600, loss: 0.014, accuracy: 99.69%epoch: 9, iter: 700, loss: 0.014, accuracy: 99.62%epoch: 10, iter: 100, loss: 0.014, accuracy: 99.54%epoch: 10, iter: 200, loss: 0.014, accuracy: 99.54%epoch: 10, iter: 300, loss: 0.015, accuracy: 99.69%epoch: 10, iter: 400, loss: 0.014, accuracy: 99.69%epoch: 10, iter: 500, loss: 0.013, accuracy: 99.62%epoch: 10, iter: 600, loss: 0.016, accuracy: 99.38%epoch: 10, iter: 700, loss: 0.017, accuracy: 99.38%
复制代码


这就是我们的简单 RNN ,以后有机会我们再尝试搭建类似 LSTM 这种更复杂的 RNN 。


作者介绍


张觉非,本科毕业于复旦大学,硕士毕业于中国科学院大学,先后任职于新浪微博、阿里,目前就职于奇虎 360,任机器学习技术专家。


本文来自 DataFun 社区


原文链接


https://mp.weixin.qq.com/s?__biz=MzU1NTMyOTI4Mw==&mid=2247493606&idx=1&sn=bf89adb739302688e6b837084bff911a&chksm=fbd7558acca0dc9c6a9754975ee796239b5fa2c26a38f604c56d19a5189f8a0febd75698ddd7&scene=27#wechat_redirect


2019-09-17 08:001576

评论

发布
暂无评论
发现更多内容

「重构:改善既有代码的设计」实战篇

京东科技开发者

再升级!MoneyPrinterPlus集成GPT_SoVITS

程序那些事

工具 AIGC

变“金点子”为“好应用”,合合信息智能文档处理技术助力大学生探索AI创新边界

合合技术团队

人工智能 科技 比赛 合合信息

万界星空科技AI低代码MES,引领制造业智能化新潮流

万界星空科技

低代码 低代码平台 mes 万界星空科技 低代码云MES

ETL数据集成丨将SQL Server数据同步至Oracle的具体实现

谷云科技RestCloud

数据库 oracle ETL 数据集成 SQL Server

周期补数据、定时补数据,深入了解两种补数据的特殊方式

袋鼠云数栈

大数据

万界星空科技服装行业MES系统解决方案

万界星空科技

工业互联网 制造业 服装行业 mes 万界星空科技

传智教育引通义灵码进课堂,为技术人才教育学习提效

阿里巴巴云原生

阿里云 云原生 通义灵码

传智教育引通义灵码进课堂,为技术人才教育学习提效

阿里云云效

阿里云 云原生 通义灵码

按图搜索的精准营销:基于拍立淘API返回值的用户画像

技术冰糖葫芦

API Explorer API 接口 API 测试 API】

当系统闹脾气:用「因果推断」哄稳技术的心

京东科技开发者

大促高并发系统性能优化实战--京东联盟广告推荐系统

京东科技开发者

打造领域专属的大语言模型

霍格沃兹测试开发学社

人工智能 | 打造领域专属的大语言模型

测试人

软件测试

KubeCon China 2024 | KubeEdge 邀您共话边云协同AI智算

华为云原生团队

云计算 容器 云原生

淘宝商品评论接口API:获取淘宝商品评论数据评论总数(支持排序)

tbapi

淘宝API接口 淘宝商品评论接口 淘宝商品评论数据 淘宝商品评论API

面试官:说说volatile应用和实现原理?

王磊

运用计算图搭建递归神经网络(RNN)_文化 & 方法_DataFunTalk_InfoQ精选文章