写点什么

运用计算图搭建递归神经网络(RNN)

  • 2019-09-17
  • 本文字数:5544 字

    阅读完需:约 18 分钟

运用计算图搭建递归神经网络(RNN)

继续玩我们的计算图框架。这一次我们运用计算图搭建递归神经网络(RNN,Recursive Neural Network)。RNN 处理前后有承接关系的序列状数据,例如时序数据。当然,前后的承接也不一定是时间上的,但总之是有前后关系的序列。

RNN

RNN 的思想是:网络也分步,每步以输入序列的该步数据(向量)和上一步数据(第一步没有)为输入,进行变换,得到这一步的输出(向量)。这样的话,序列的每一步就会对下一步产生影响。RNN 用变换的参数把握序列每一步之间的关系。最后一步的输出可以送给全连接层,最终用于分类或回归。RNN 有很多种,有一些复杂的变体,本文搭建一种最简单的 RNN ,它的结构是这样的:



蓝色长条表示 m 维输入向量,一共 n 个。这表示数据是长度为 n 的序列,每一步是一个 m 维向量。绿色的矩形就是每一步的变换。yi 是每一步的 k 维输出向量。每一步用 k x k 的权值矩阵 Y 去乘前一步的输出向量(第一步没有),用 k x m 的权值矩阵 W 去乘这一步的输入向量,加和后再加上 k 维偏置向量 b ,施加激活函数 ϕ (我们取 ReLU),就得到这一步的输出。


最后一步的输出也是 k 维向量,把它送给全连接层,最后施加 SoftMax 后得到各个类别的概率,再接上一个交叉熵损失就可以用来训练分类问题了。用我们的计算图框架可以这样搭建这个简单的 RNN(代码):


seq_len = 96  # 序列长度dimension = 16  # 序列每一步的向量维度hidden_dim = 12  # RNN 时间单元的输出维度
# 时间序列变量,每一步一个 dimension 维向量(Variable 节点),保存在数组 input 中input_vectors = []for i in range(seq_len): input_vectors.append(Variable(dim=(dimension, 1), init=False, trainable=False)) # 对于本步输入的权值矩阵W = Variable(dim=(hidden_dim, dimension), init=True, trainable=True)
# 对于上步输入的权值矩阵Y = Variable(dim=(hidden_dim, hidden_dim), init=True, trainable=True)
# 偏置向量b = Variable(dim=(hidden_dim, 1), init=True, trainable=True)
# 构造 RNNlast_step = None # 上一步的输出,第一步没有上一步,先将其置为 Nonefor iv in input_vectors: y = Add(MatMul(W, iv), b)
if last_step is not None: y = Add(MatMul(Y, last_step), y)
y = ReLU(y)
last_step = y

fc1 = fc(y, hidden_dim, 6, "ReLU") # 第一全连接层fc2 = fc(fc1, 6, 2, "None") # 第二全连接层
# 分类概率prob = SoftMax(fc2)
# 训练标签label = Variable((2, 1), trainable=False)
# 交叉熵损失loss = CrossEntropyWithSoftMax(fc2, label)
复制代码


这就是构造 RNN 以及交叉熵损失的计算图的代码,很简单,right ?有了计算图以及自动求导,我们只管搭建网络即可,网络的训练就交给计算图去做了。否则你可以想象,按照示意图表示的计算,推导交叉熵损失对 RNN 的各个权值矩阵和偏置的梯度是多么困难。

时间序列问题

我们构造一份数据,它包含两类时间序列,一类是方波,一类是正弦波,代码如下:


def get_sequence_data(number_of_classes=2, dimension=10, length=10, number_of_examples=1000, train_set_ratio=0.7, seed=42):    """    生成两类序列数据。    """    xx = []    xx.append(np.sin(np.arange(0, 10, 10 / length)))  # 正弦波    xx.append(np.array(signal.square(np.arange(0, 10, 10 / length))))  # 方波

data = [] for i in range(number_of_classes): x = xx[i] for j in range(number_of_examples): sequence = x + np.random.normal(0, 1.0, (dimension, len(x))) # 加入高斯噪声 label = np.array([int(i == j) for j in range(number_of_classes)])
data.append(np.c_[sequence.reshape(1, -1), label.reshape(1, -1)])
# 把各个类别的样本合在一起 data = np.concatenate(data, axis=0)
# 随机打乱样本顺序 np.random.shuffle(data)
# 计算训练样本数量 train_set_size = int(number_of_examples * train_set_ratio) # 训练集样本数量
# 将训练集和测试集、特征和标签分开 return (data[:train_set_size, :-number_of_classes], data[:train_set_size, -number_of_classes:], data[train_set_size:, :-number_of_classes], data[train_set_size:, -number_of_classes:])
复制代码


我们用这一行代码获取长度为 96 ,维度为 16 的两类(各 1000 个)序列:


# 获取两类时间序列:正弦波和方波train_x, train_y, test_x, test_y = get_sequence_data(length=seq_len, dimension=dimension)
复制代码


看一看时间序列样本,先看正弦波:



正弦波序列


这是一个正弦波时间序列样本,它包含 16 条曲线,每一条都是 sin 曲线加噪声。之所以包含 16 条曲线,因为我们的时间序列的每一步是一个 16 维向量,按时间列起来就有了 16 条正弦曲线。正弦波时间序列是我们的正样本。方波时间序列是负样本:



方波序列


一个方波时间序列先维持 +1 一段时间,变为 -1 维持一段时间,再回到 +1 ,循环往复。由于我们的高斯噪声加得较大,可以看到正弦波和方波还是有可能混淆的,但也能看出它们之间的差异。

训练

现在就用我们构造的 RNN 训练一个分类模型,分类正弦波和方波,代码如下:


from sklearn.metrics import accuracy_score
from layer import *from node import *from optimizer import *
seq_len = 96 # 序列长度dimension = 16 # 序列每一步的向量维度hidden_dim = 12 # RNN 时间单元的输出维度
# 获取两类时间序列:正弦波和方波train_x, train_y, test_x, test_y = get_sequence_data(length=seq_len, dimension=dimension)
# 时间序列变量,每一步一个 dimension 维向量(Variable 节点),保存在数组 input 中input_vectors = []for i in range(seq_len): input_vectors.append(Variable(dim=(dimension, 1), init=False, trainable=False)) # 对于本步输入的权值矩阵W = Variable(dim=(hidden_dim, dimension), init=True, trainable=True)
# 对于上步输入的权值矩阵Y = Variable(dim=(hidden_dim, hidden_dim), init=True, trainable=True)
# 偏置向量b = Variable(dim=(hidden_dim, 1), init=True, trainable=True)
# 构造 RNNlast_step = None # 上一步的输出,第一步没有上一步,先将其置为 Nonefor iv in input_vectors: y = Add(MatMul(W, iv), b)
if last_step is not None: y = Add(MatMul(Y, last_step), y)
y = ReLU(y)
last_step = y

fc1 = fc(y, hidden_dim, 6, "ReLU") # 第一全连接层fc2 = fc(fc1, 6, 2, "None") # 第二全连接层
# 分类概率prob = SoftMax(fc2)
# 训练标签label = Variable((2, 1), trainable=False)
# 交叉熵损失loss = CrossEntropyWithSoftMax(fc2, label)
# Adam 优化器optimizer = Adam(default_graph, loss, 0.005, batch_size=16)
# 训练print("start training", flush=True)for e in range(10):
for i in range(len(train_x)): x = np.mat(train_x[i, :]).reshape(dimension, seq_len) for j in range(seq_len): input_vectors[j].set_value(x[:, j]) label.set_value(np.mat(train_y[i, :]).T)
# 执行一步优化 optimizer.one_step()
if i > 1 and (i + 1) % 100 == 0:
# 在测试集上评估模型正确率 probs = [] losses = [] for j in range(len(test_x)): # x = test_x[j, :].reshape(dimension, seq_len) x = np.mat(test_x[j, :]).reshape(dimension, seq_len) for k in range(seq_len): input_vectors[k].set_value(x[:, k]) label.set_value(np.mat(test_y[j, :]).T)
# 前向传播计算概率 prob.forward() probs.append(prob.value.A1)
# 计算损失值 loss.forward() losses.append(loss.value[0, 0])
# print("test instance: {:d}".format(j))
# 取概率最大的类别为预测类别 pred = np.argmax(np.array(probs), axis=1) truth = np.argmax(test_y, axis=1) accuracy = accuracy_score(truth, pred)
default_graph.draw() print("epoch: {:d}, iter: {:d}, loss: {:.3f}, accuracy: {:.2f}%".format(e + 1, i + 1, np.mean(losses), accuracy * 100), flush=True)
复制代码


训练 10 个 epoch 后,测试集上的正确率达到了 99% :


epoch: 1, iter: 100, loss: 0.693, accuracy: 51.08%epoch: 1, iter: 200, loss: 0.692, accuracy: 51.08%epoch: 1, iter: 300, loss: 0.677, accuracy: 78.31%epoch: 1, iter: 400, loss: 0.573, accuracy: 49.31%epoch: 1, iter: 500, loss: 0.520, accuracy: 53.92%epoch: 1, iter: 600, loss: 0.599, accuracy: 97.08%epoch: 1, iter: 700, loss: 0.617, accuracy: 99.00%epoch: 2, iter: 100, loss: 0.601, accuracy: 94.46%epoch: 2, iter: 200, loss: 0.579, accuracy: 82.08%epoch: 2, iter: 300, loss: 0.558, accuracy: 76.15%epoch: 2, iter: 400, loss: 0.531, accuracy: 67.85%epoch: 2, iter: 500, loss: 0.507, accuracy: 63.77%epoch: 2, iter: 600, loss: 0.493, accuracy: 61.15%epoch: 2, iter: 700, loss: 0.479, accuracy: 62.23%epoch: 3, iter: 100, loss: 0.443, accuracy: 69.92%epoch: 3, iter: 200, loss: 0.393, accuracy: 85.85%epoch: 3, iter: 300, loss: 0.365, accuracy: 97.69%epoch: 3, iter: 400, loss: 0.284, accuracy: 95.08%epoch: 3, iter: 500, loss: 0.199, accuracy: 95.69%epoch: 3, iter: 600, loss: 0.490, accuracy: 80.62%epoch: 3, iter: 700, loss: 0.264, accuracy: 94.31%epoch: 4, iter: 100, loss: 0.320, accuracy: 83.46%epoch: 4, iter: 200, loss: 0.333, accuracy: 80.92%epoch: 4, iter: 300, loss: 0.276, accuracy: 90.15%epoch: 4, iter: 400, loss: 0.242, accuracy: 95.00%epoch: 4, iter: 500, loss: 0.217, accuracy: 96.38%epoch: 4, iter: 600, loss: 0.191, accuracy: 95.31%epoch: 4, iter: 700, loss: 0.167, accuracy: 94.00%epoch: 5, iter: 100, loss: 0.142, accuracy: 94.62%epoch: 5, iter: 200, loss: 0.111, accuracy: 96.85%epoch: 5, iter: 300, loss: 0.116, accuracy: 96.85%epoch: 5, iter: 400, loss: 0.080, accuracy: 96.77%epoch: 5, iter: 500, loss: 0.059, accuracy: 98.54%epoch: 5, iter: 600, loss: 0.054, accuracy: 98.54%epoch: 5, iter: 700, loss: 0.042, accuracy: 99.00%epoch: 6, iter: 100, loss: 0.047, accuracy: 98.46%epoch: 6, iter: 200, loss: 0.049, accuracy: 98.08%epoch: 6, iter: 300, loss: 0.030, accuracy: 99.15%epoch: 6, iter: 400, loss: 0.029, accuracy: 99.23%epoch: 6, iter: 500, loss: 0.028, accuracy: 99.08%epoch: 6, iter: 600, loss: 0.029, accuracy: 99.08%epoch: 6, iter: 700, loss: 0.024, accuracy: 99.15%epoch: 7, iter: 100, loss: 0.023, accuracy: 99.15%epoch: 7, iter: 200, loss: 0.031, accuracy: 98.85%epoch: 7, iter: 300, loss: 0.023, accuracy: 99.46%epoch: 7, iter: 400, loss: 0.022, accuracy: 99.54%epoch: 7, iter: 500, loss: 0.022, accuracy: 99.38%epoch: 7, iter: 600, loss: 0.027, accuracy: 98.77%epoch: 7, iter: 700, loss: 0.019, accuracy: 99.46%epoch: 8, iter: 100, loss: 0.018, accuracy: 99.54%epoch: 8, iter: 200, loss: 0.018, accuracy: 99.46%epoch: 8, iter: 300, loss: 0.018, accuracy: 99.54%epoch: 8, iter: 400, loss: 0.018, accuracy: 99.62%epoch: 8, iter: 500, loss: 0.017, accuracy: 99.54%epoch: 8, iter: 600, loss: 0.026, accuracy: 99.00%epoch: 8, iter: 700, loss: 0.021, accuracy: 99.23%epoch: 9, iter: 100, loss: 0.017, accuracy: 99.62%epoch: 9, iter: 200, loss: 0.016, accuracy: 99.54%epoch: 9, iter: 300, loss: 0.015, accuracy: 99.54%epoch: 9, iter: 400, loss: 0.014, accuracy: 99.69%epoch: 9, iter: 500, loss: 0.014, accuracy: 99.62%epoch: 9, iter: 600, loss: 0.014, accuracy: 99.69%epoch: 9, iter: 700, loss: 0.014, accuracy: 99.62%epoch: 10, iter: 100, loss: 0.014, accuracy: 99.54%epoch: 10, iter: 200, loss: 0.014, accuracy: 99.54%epoch: 10, iter: 300, loss: 0.015, accuracy: 99.69%epoch: 10, iter: 400, loss: 0.014, accuracy: 99.69%epoch: 10, iter: 500, loss: 0.013, accuracy: 99.62%epoch: 10, iter: 600, loss: 0.016, accuracy: 99.38%epoch: 10, iter: 700, loss: 0.017, accuracy: 99.38%
复制代码


这就是我们的简单 RNN ,以后有机会我们再尝试搭建类似 LSTM 这种更复杂的 RNN 。


作者介绍


张觉非,本科毕业于复旦大学,硕士毕业于中国科学院大学,先后任职于新浪微博、阿里,目前就职于奇虎 360,任机器学习技术专家。


本文来自 DataFun 社区


原文链接


https://mp.weixin.qq.com/s?__biz=MzU1NTMyOTI4Mw==&mid=2247493606&idx=1&sn=bf89adb739302688e6b837084bff911a&chksm=fbd7558acca0dc9c6a9754975ee796239b5fa2c26a38f604c56d19a5189f8a0febd75698ddd7&scene=27#wechat_redirect


2019-09-17 08:001418

评论

发布
暂无评论
发现更多内容

私有化部署局域网 IM:BeeWorks支持内网使用

BeeWorks

即时通讯 IM 私有化部署

全前维护LED显示屏优势和选购指南

Dylan

LED显示屏 全彩LED显示屏 户外LED显示屏 led显示屏厂家 户内led显示屏

超融合架构 “破壁”:从企业到数据中心的全能应用版图

智驱前线

超越预算,打开企业预算管理新思维

智达方通

全面预算管理 财务管理 成本预算管理

Rust 性能提升“最后一公里”:详解 Profiling 瓶颈定位与优化|得物技术

得物技术

rust Profile rust语言

哈尔滨等保测评中的 “神秘角色”:测评师

等保测评

技术文档 | 使用 Spring AI 实现一个简单的 Pulsar MCP Server

AscentStream

MCP

开源能源管理系统应用前景:以 MyEMS 为例

开源能源管理系统

开源 能源管理系统

Apache SeaTunnel 新定位!迈向多模态数据集成的统一工具

白鲸开源

大数据 开源 数据集成 多模态 Apache SeaTunnel

Prometheus 告警时为何无法获取现场值

巴辉特

Prometheus 监控告警 夜莺监控 运维监控 开源监控

一文吃透 Promise 与 async/await,异步编程也能如此简单!建议收藏!

左诗右码

一文教你Docker自建Jupyter Notebook,并用内网穿透实现远程访问

科技热闻

英伟达被约谈?国产替代迎来新机遇

禅道项目管理

软件开发 信创 软件安全 国产化替代 禅道项目管理软件

京东店铺所有商品API技术指南

tbapi

京东API 京东数据接口 京东店铺所有商品接口 京东店铺数据采集

企业 IM 即时通讯BeeWorks

BeeWorks

即时通讯 IM 私有化部署

非凸科技受邀参加Community Over Code Asia 2025 Rust分论坛

非凸科技

通过Milvus内置Sparse-BM25算法进行全文检索并将混合检索应用于RAG系统

阿里云大数据AI技术

全文检索 Milvus 混合检索 RAG应用 Sparse-BM25算法

跨文化冲突下的品牌舆情管理

沃观Wovision

出海企业 舆情监控 沃观Wovision 海外舆情监测

Java干货分享

codemonkey

#java #并发

黑龙江等保测评全流程解析:从定级到整改的完整指南

等保测评

主流自动化测试框架的技术解析与实战指南

测吧(北京)科技有限公司

人工智能 智能体 测试开发 playwright selenium

CST帮助文档:SIMULIA网格处理软件---PowerDELTA

思茂信息

cst cst电磁仿真 CST Studio Suite

CAD中如何绘制圆弧?详细教程来了

在路上

cad cad看图 CAD看图王

MyEMS:重塑能源管理,驱动高效节能新变革

开源能源管理系统

开源 能源管理系统

黑龙江等保测评核心指标解析:技术安全与管理安全的双重保障

等保测评

VS Code Server本地Docker部署+贝锐花生壳内网穿透远程访问教程

科技热闻

大数据-65 Kafka 高级特性 Broker ISR 宕机重平衡 实测详解

武子康

Java 大数据 kafka 分布式 消息队列

ClkLog埋点与用户行为分析系统2.0:架构升级性能跃迁,限时优惠速来体验

ClkLog

开源 用户行为分析 CDP 客户画像 埋点分析系统

7 月 SeaTunnel 社区狂飙:新特性、强优化、贡献者满分输出

白鲸开源

开源 数据同步 数据集成 Apache SeaTunnel

昆仑万维「Matrix-Game 2.0」发布,国产开源的Genie 3来啦!

新消费日报

告别研发痛点!群核科技靠 “自动化左移” 重构质量效能,效能飙升有何秘诀?

杭州群核科技质量效能

运用计算图搭建递归神经网络(RNN)_文化 & 方法_DataFunTalk_InfoQ精选文章