写点什么

Amazon Redshift Spectrum 十二大最佳实践(一)

  • 2020-01-13
  • 本文字数:2685 字

    阅读完需:约 9 分钟

Amazon Redshift Spectrum 十二大最佳实践(一)

Amazon Redshift Spectrum 使您能够对存储在 Amazon S3 中的数据运行 Amazon Redshift SQL 查询。利用 Redshift Spectrum,您可以将 Amazon Redshift 的强大分析能力扩展到存储于 Amazon Redshift 本地的数据之外。Redshift Spectrum 提供的多种功能能够扩大您可能实施的战略。例如,它能够扩展 Amazon Redshift 可访问的数据大小,并能让您将计算与存储分离,从而提升混合工作负载用例的处理速度。Redshift Spectrum 还能够提高数据的互操作性,因为您可以从 Amazon Redshift 之外的多个计算平台访问同一 S3 对象。这些平台包括 Amazon AthenaAmazon EMR with Apache Spark、Amazon EMR with Apache Hive、Presto 及可访问 S3 的任何其他计算平台。因此,您无需通过繁琐、耗时的提取、转换、加载 (ETL) 流程,即可查询您的 Amazon S3 数据湖中的海量数据。您还可以连接外部 S3 表与集群本地磁盘上的表。Redshift Spectrum 对数以千计的节点进行复杂的查询优化和扩展处理,从而交付快速的性能。在本博文中,我们收集了 Redshift Spectrum 的 12 大重要最佳实践,并将这些实践分成不同的功能组。这些指南基于我们与 Amazon Redshift 客户的许多交互以及大量直接项目工作。在您开始使用之前,需要遵循以下步骤进行设置。有关开始使用 Redshift Spectrum 的先决条件及步骤的更多信息,请参阅 Amazon Redshift 文档中的Amazon Redshift Spectrum 入门

设置测试环境

要进行测试以验证本博文中概述的最佳实践,您可以使用任何数据集。Redshift Spectrum 支持多种常见数据格式:Text、Parquet、ORC、JSON、Avro 等等。您可以使用数据的原始格式进行查询,也可以根据数据访问模式、存储要求等等将数据转换为更高效的格式。例如,如果您经常访问列的子集,Parquet 和 ORC 等列格式能够仅读取所需列,从而大大降低 I/O。如何转换文件格式不在本博文的探讨范围之内,有关如何转换文件格式的更多信息,请参阅以下资源:


创建外部 schema

您可以遵循以下方法创建名为 s3_external_schema 的外部 schema:


SQL


create external schema s3_external_schema from data catalog database 'spectrumdb' iam_role 'arn:aws:iam::<AWS_ACCOUNT_ID>:role/aod-redshift-role'create external database if not exists;
复制代码


Amazon Redshift 集群和 Amazon S3 中的数据文件必须位于同一 AWS 区域。您可以在 Amazon Redshift、AWS Glue、Athena Data Catalog 或您自己的 Apache Hive 元存储中创建外部数据库。您的 Amazon Redshift 集群需要授权才能访问您的外部数据目录以及 Amazon S3 中的数据文件。您需要引用附加到您集群的 AWS Identity and Access Management (IAM) 角色(例如 aod-redshift-role)来提供授权。有关更多信息,请参阅 Amazon Redshift 文档中的为 Amazon Redshift 创建 IAM 角色

定义外部表

您可以使用 Parquet 文件定义分区的外部表,并使用如下逗号分隔值 (CSV) 文件定义其他非分区的外部表:


SQL


CREATE  external table s3_external_schema.LINEITEM_PART_PARQ (  L_ORDERKEY BIGINT, L_PARTKEY BIGINT, L_SUPPKEY BIGINT, L_LINENUMBER INT, L_QUANTITY DECIMAL(12,2), L_EXTENDEDPRICE DECIMAL(12,2), L_DISCOUNT DECIMAL(12,2), L_TAX DECIMAL(12,2), L_RETURNFLAG VARCHAR(128), L_LINESTATUS VARCHAR(128), L_COMMITDATE DATE, L_RECEIPTDATE DATE, L_SHIPINSTRUCT VARCHAR(128), L_SHIPMODE VARCHAR(128), L_COMMENT VARCHAR(128))partitioned by (L_SHIPDATE DATE)stored as PARQUETlocation 's3://<your-bucket>/<xyz>/lineitem_partition/';
CREATE external table s3_external_schema.LINEITEM_CSV ( L_ORDERKEY BIGINT, L_PARTKEY INT, L_SUPPKEY INT, L_LINENUMBER INT, L_QUANTITY DECIMAL(12,2), L_EXTENDEDPRICE DECIMAL(12,2), L_DISCOUNT DECIMAL(12,2), L_TAX DECIMAL(12,2), L_RETURNFLAG VARCHAR(128), L_LINESTATUS VARCHAR(128), L_SHIPDATE DATE , L_COMMITDATE DATE, L_RECEIPTDATE DATE, L_SHIPINSTRUCT VARCHAR(128), L_SHIPMODE VARCHAR(128), L_COMMENT VARCHAR(128))row format delimitedfields terminated by '|'stored as textfilelocation 's3://<your-bucket>/<xyz>/lineitem_csv/';
复制代码

查询数据

总的来说,Amazon Redshift 通过 Redshift Spectrum 访问存储在 Amazon S3 中的外部表。您可以使用用于其他 Amazon Redshift 表的相同的 SELECT 语法查询外部表。目前,所有外部表均为只读格式。


您必须在您的 SELECT 语句中引用外部表(方法是在表名称前面用 schema 名称做前缀),无需创建表并将其加载到 Amazon Redshift 中。


如希望使用 Redshift Spectrum 执行测试,可从以下两个查询着手。


查询 1


SQL


SELECT  l_returnflag,        l_linestatus,        sum(l_quantity) as sum_qty,        sum(l_extendedprice) as sum_base_price,        sum(l_extendedprice*(1-l_discount)) as sum_disc_price,        sum(l_extendedprice*(1-l_discount)*(1+l_tax)) as sum_charge,        avg(l_quantity) as avg_qty,        avg(l_extendedprice) as avg_priceFROM s3_external_schema.LINEITEM_PART_PARQWHERE l_shipdate BETWEEN '1998-12-01' AND '1998-12-31'GROUP BY l_returnflag, l_linestatusORDER BY l_returnflag, l_linestatus;
复制代码


该查询仅访问一个外部表,可用于突出显示 Redshift Spectrum 层提供的额外处理能力。


查询 2


SQL


SELECT   l_orderkey,         Sum(l_extendedprice * (1 - l_discount)) AS revenue,         o_orderdate,         o_shippriority FROM     customer, orders, s3_external_schema.lineitem_part_parq WHERE    c_mktsegment = 'BUILDING'          AND      c_custkey = o_custkey          AND      l_orderkey = o_orderkey          AND      o_orderdate < date '1995-03-15'          AND      l_shipdate >  date '1995-03-15' GROUP BY l_orderkey, o_orderdate, o_shippriority ORDER BY revenue DESC, o_orderdate LIMIT 20;
复制代码


该查询将三个表连接在一起:customerorders 表是本地 Amazon Redshift 表,而 LINEITEM_PART_PARQ 表是外部表。


本文转载自 AWS 技术博客。


原文链接:https://amazonaws-china.com/cn/blogs/china/12-best-practices-for-amazon-redshift-spectrum/


2020-01-13 14:53700

评论

发布
暂无评论
发现更多内容

Cilium 多集群 ClusterMesh 介绍

Se7en

在线HTTP请求头响应头转JSON工具

入门小站

工具

钉钉 Flutter 跨四端方案设计与技术实践 | Dutter

阿里巴巴终端技术

flutter 移动端 跨端框架 桌面端

关于数据一致性的理论

穿过生命散发芬芳

数据一致性 5月月更

druid 源码阅读 2——minEvictableIdleTimeMillis参数的实现逻辑

张大彪

如何开发 LAXCUS 分布式应用软件(四):编写边缘端软件

LAXCUS分布式操作系统

并行计算 端边云协同架构 分布式操作系统 分布式应用软件

维护版式文档技术生态 国际PDF协会向福昕软件发来感谢信

联营汇聚

在线TSV转纯文本工具

入门小站

工具

Iframe的好处和坏处

恒山其若陋兮

5月月更

百万用户规模电商秒杀系统架构设计

「架构实战营」

【刷题第五天】1. 两数之和

白日梦

5月月更

我国类脑计算处于什么水平?人工智能下神经科学启发的类脑计算。

GPU算力

人工智能 液冷服务器 类脑计算 神经科学

“四大高手”为你的 Vue 应用程序保驾护航

葡萄城技术团队

云图说|华为云帮助中心最佳实践:源自项目实战的上云指导

华为云开发者联盟

最佳实践 华为云 云图说 帮助中心 业务上云

Hadoop Echarts

Emperor_LawD

hadoop 5月月更

2021年国内促进软件产业发展十大事件出炉,HarmonyOS 2入选

科技汇

备受关注的Bit.Store,最新动态一览

小哈区块

备受关注的Bit.Store,最新动态一览

西柚子

数据产品经理的价值管理

第519区

团队管理 项目管理 产品经理 数据产品经理 项目经理

linux之iftop命令

入门小站

Linux

实现同比、环比计算的N种姿势

葡萄城技术团队

数据分析 BI数据分析 同比 环比

深入剖析 split locks,i++ 可能导致的灾难

火山引擎开发者社区

知名金融数字化服务提供商南天信息加入龙蜥社区

OpenAnolis小助手

开源 金融数字化 龙蜥社区 CLA 南天信息

大数据的特点

奔向架构师

大数据 数据仓库 5月月更

动辄“耗资过亿”的表格工具,究竟难在哪儿?

葡萄城技术团队

4月月更开奖啦!中奖者速来领取!

InfoQ写作社区官方

热门活动

玩了一场剧本杀,同车队友“不是人”

脑极体

“软件定义汽车”的数字化之变,华为云低代码平台带来了什么?

脑极体

快速上手 Pythond 采集器的最佳实践

观测云

运维 可观测性 可观测

架起医院就诊“快车道”,YRCloudFile 打造智慧 PACS 存储系统

焱融科技

云计算 分布式 高性能 文件存储 智慧医疗

时序数据库在监控运维平台中的应用

CnosDB

IoT 时序数据库 开源社区 CnosDB infra

Amazon Redshift Spectrum 十二大最佳实践(一)_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章