写点什么

如何用 Python 构建机器学习模型?

  • 2021 年 5 月 20 日
  • 本文字数:3137 字

    阅读完需:约 10 分钟

如何用Python构建机器学习模型?

本文,我们将通过 Python 语言包,来构建一些机器学习模型。

构建机器学习模型的模板


该 Notebook 包含了用于创建主要机器学习算法所需的代码模板。在 scikit-learn 中,我们已经准备好了几个算法。只需调整参数,给它们输入数据,进行训练,生成模型,最后进行预测。

1.线性回归


对于线性回归,我们需要从 sklearn 库中导入 linear_model。我们准备好训练和测试数据,然后将预测模型实例化为一个名为线性回归 LinearRegression 算法的对象,它是 linear_model 包的一个类,从而创建预测模型。之后我们利用拟合函数对算法进行训练,并利用得分来评估模型。最后,我们将系数打印出来,用模型进行新的预测。


# Import modulesfrom sklearn import linear_model
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted_variable
x_test = test_dataset_precictor_variables
# Create linear regression objectlinear = linear_model.LinearRegression()
# Train the model with training data and check the scorelinear.fit(x_train, y_train)linear.score(x_train, y_train)
# Collect coefficientsprint('Coefficient: \n', linear.coef_)print('Intercept: \n', linear.intercept_)
# Make predictionspredicted_values = linear.predict(x_test)
复制代码

2.逻辑回归


在本例中,从线性回归到逻辑回归唯一改变的是我们要使用的算法。我们将 LinearRegression 改为 LogisticRegression。


# Import modulesfrom sklearn.linear_model import LogisticRegression
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted_variable
x_test = test_dataset_precictor_variables
# Create logistic regression objectmodel = LogisticRegression()
# Train the model with training data and checking the scoremodel.fit(x_train, y_train)model.score(x_train, y_train)
# Collect coefficientsprint('Coefficient: \n', model.coef_)print('Intercept: \n', model.intercept_)
# Make predictionspredicted_vaues = model.predict(x_teste)
复制代码


3.决策树


我们再次将算法更改为 DecisionTreeRegressor:


# Import modulesfrom sklearn import tree
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted_variable
x_test = test_dataset_precictor_variables
# Create Decision Tree Regressor Objectmodel = tree.DecisionTreeRegressor()
# Create Decision Tree Classifier Objectmodel = tree.DecisionTreeClassifier()
# Train the model with training data and checking the scoremodel.fit(x_train, y_train)model.score(x_train, y_train)
# Make predictionspredicted_values = model.predict(x_test)
复制代码


4.朴素贝叶斯


我们再次将算法更改为 DecisionTreeRegressor:


# Import modulesfrom sklearn.naive_bayes import GaussianNB
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted variable
x_test = test_dataset_precictor_variables
# Create GaussianNB objectmodel = GaussianNB()
# Train the model with training data model.fit(x_train, y_train)
# Make predictionspredicted_values = model.predict(x_test)
复制代码


5.支持向量机


在本例中,我们使用 SVM 库的 SVC 类。如果是 SVR,它就是一个回归函数:


# Import modulesfrom sklearn import svm
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted variable
x_test = test_dataset_precictor_variables
# Create SVM Classifier object model = svm.svc()
# Train the model with training data and checking the scoremodel.fit(x_train, y_train)model.score(x_train, y_train)
# Make predictionspredicted_values = model.predict(x_test)
复制代码


6.K- 最近邻


在 KneighborsClassifier 算法中,我们有一个超参数叫做 n_neighbors,就是我们对这个算法进行调整。


# Import modulesfrom sklearn.neighbors import KNeighborsClassifier
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted variable
x_test = test_dataset_precictor_variables
# Create KNeighbors Classifier Objects KNeighborsClassifier(n_neighbors = 6) # default value = 5
# Train the model with training datamodel.fit(x_train, y_train)
# Make predictionspredicted_values = model.predict(x_test)
复制代码


7.K- 均值


# Import modulesfrom sklearn.cluster import KMeans
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted variable
x_test = test_dataset_precictor_variables
# Create KMeans objects k_means = KMeans(n_clusters = 3, random_state = 0)
# Train the model with training datamodel.fit(x_train)
# Make predictionspredicted_values = model.predict(x_test)
复制代码


8.随机森林


# Import modulesfrom sklearn.ensemble import RandomForestClassifier
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted variable
x_test = test_dataset_precictor_variables
# Create Random Forest Classifier objects model = RandomForestClassifier()
# Train the model with training data model.fit(x_train, x_test)
# Make predictionspredicted_values = model.predict(x_test)
复制代码


9.降维


# Import modulesfrom sklearn import decomposition
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted variable
x_test = test_dataset_precictor_variables
# Creating PCA decomposition objectpca = decomposition.PCA(n_components = k)
# Creating Factor analysis decomposition objectfa = decomposition.FactorAnalysis()
# Reduc the size of the training set using PCAreduced_train = pca.fit_transform(train)
# Reduce the size of the training set using PCAreduced_test = pca.transform(test)
复制代码


10.梯度提升和 AdaBoost


# Import modulesfrom sklearn.ensemble import GradientBoostingClassifier
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted variable
x_test = test_dataset_precictor_variables
# Creating Gradient Boosting Classifier objectmodel = GradientBoostingClassifier(n_estimators = 100, learning_rate = 1.0, max_depth = 1, random_state = 0)
# Training the model with training data model.fit(x_train, x_test)
# Make predictionspredicted_values = model.predict(x_test)
复制代码


我们的工作将是把这些算法中的每一个块转化为一个项目。首先,定义一个业务问题,对数据进行预处理,训练算法,调整超参数,获得可验证的结果,在这个过程中不断迭代,直到我们达到满意的精度,做出理想的预测。


原文链接:


https://levelup.gitconnected.com/10-templates-for-building-machine-learning-models-with-notebook-282c4eb0987f

2021 年 5 月 20 日 16:011048

评论

发布
暂无评论
发现更多内容

DDD实施过程中的点滴思考

Winfield

领域驱动设计 DDD

Rust是如何保障内存安全的

博文视点Broadview

读书笔记 rust

漫画 | 架构设计中的那些事

码农神说

架构设计 架构师 漫画编程

信创舆情一线--《关键信息基础设施安全保护条例》纳入2020年立法计划

统小信uos

信息安全

LR.Net平台研发轶事,每一个点都很难,但我们不将就

力软.net/java开发平台

C# .net 跨平台 框架开发

数据结构与算法知识点总结

围绕工作的务实学习

积极支持EdgeX发展,英特尔为2020 EdgeX中国挑战赛获奖队伍创造广阔合作空间

最新动态

带你解析MySQL binlog

Simon

MySQL Binlog

一些思考

张健

图片处理不用愁,给你十个小帮手

阿宝哥

Java 开源 前端 工具 图片

领域驱动设计(DDD)实践之路(一)

vivo互联网技术

架构 领域驱动设计 DDD

HTTP/2 总结

guoguo 👻

编程能力 —— 异步编程

wendraw

Java 前端进阶训练营 编程能力

编程能力 —— 寻路问题

wendraw

Java 前端进阶训练营 编程能力

利用 Python 爬取了 13966 条运维招聘信息,我得出了哪些结论?

JackTian

Python Linux 运维 数据分析 招聘

Python类中的__new__和__init__的区别

BigYoung

Python __init__ __new__

Python中的@staticmethod和@classmethod的区别

BigYoung

Python classmethod staticmethod

开发者必备——IDEA配置清单

Noneplus

配置 IDEA

30 张图带你分分钟看懂进程和线程基础知识全家桶

爱嘤嘤嘤斯坦

Java 线程 进程 进程线程区别

Java集合总结,从源码到并发一路狂飙

给你买橘子

Java 编程 算法 集合

最大的 String 字符长度是多少?

武培轩

Java 源码 后端 JVM

猿灯塔:spring Boot Starter开发及源码刨析(二)

猿灯塔

Java 猿灯塔 源码刨析

还在划水?这个SQL你能写出来吗?

书旅

php MySQL SQL语法 sql查询

SpringBoot入门:00 - 初始化项目

封不羁

Spring Boot java 14

漫画通信:一图看懂通信发展史

阿里云Edge Plus

编程能力 —— 解析表达式

wendraw

Java 前端进阶训练营 编程能力

Node.js与二进制数据流

自然醒

Java node.js 前端 二进制

一文看懂 OAuth2

pingan8787

Java 前端 Web oauth2.0

mac vmware centos7 设置静态IP

愤毛阿青

network vmware Centos 7

性能碾压 POI !利用模板语法快速生成 Excel 报表

Geek_Willie

表格控件 GCExcel 服务器端开发

流水账

zack

Flutter 自动化测试

Flutter 自动化测试

如何用Python构建机器学习模型?-InfoQ