写点什么

如何用 Python 构建机器学习模型?

  • 2021-05-20
  • 本文字数:3137 字

    阅读完需:约 10 分钟

如何用Python构建机器学习模型?

本文,我们将通过 Python 语言包,来构建一些机器学习模型。

构建机器学习模型的模板


该 Notebook 包含了用于创建主要机器学习算法所需的代码模板。在 scikit-learn 中,我们已经准备好了几个算法。只需调整参数,给它们输入数据,进行训练,生成模型,最后进行预测。

1.线性回归


对于线性回归,我们需要从 sklearn 库中导入 linear_model。我们准备好训练和测试数据,然后将预测模型实例化为一个名为线性回归 LinearRegression 算法的对象,它是 linear_model 包的一个类,从而创建预测模型。之后我们利用拟合函数对算法进行训练,并利用得分来评估模型。最后,我们将系数打印出来,用模型进行新的预测。


# Import modulesfrom sklearn import linear_model
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted_variable
x_test = test_dataset_precictor_variables
# Create linear regression objectlinear = linear_model.LinearRegression()
# Train the model with training data and check the scorelinear.fit(x_train, y_train)linear.score(x_train, y_train)
# Collect coefficientsprint('Coefficient: \n', linear.coef_)print('Intercept: \n', linear.intercept_)
# Make predictionspredicted_values = linear.predict(x_test)
复制代码

2.逻辑回归


在本例中,从线性回归到逻辑回归唯一改变的是我们要使用的算法。我们将 LinearRegression 改为 LogisticRegression。


# Import modulesfrom sklearn.linear_model import LogisticRegression
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted_variable
x_test = test_dataset_precictor_variables
# Create logistic regression objectmodel = LogisticRegression()
# Train the model with training data and checking the scoremodel.fit(x_train, y_train)model.score(x_train, y_train)
# Collect coefficientsprint('Coefficient: \n', model.coef_)print('Intercept: \n', model.intercept_)
# Make predictionspredicted_vaues = model.predict(x_teste)
复制代码


3.决策树


我们再次将算法更改为 DecisionTreeRegressor:


# Import modulesfrom sklearn import tree
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted_variable
x_test = test_dataset_precictor_variables
# Create Decision Tree Regressor Objectmodel = tree.DecisionTreeRegressor()
# Create Decision Tree Classifier Objectmodel = tree.DecisionTreeClassifier()
# Train the model with training data and checking the scoremodel.fit(x_train, y_train)model.score(x_train, y_train)
# Make predictionspredicted_values = model.predict(x_test)
复制代码


4.朴素贝叶斯


我们再次将算法更改为 DecisionTreeRegressor:


# Import modulesfrom sklearn.naive_bayes import GaussianNB
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted variable
x_test = test_dataset_precictor_variables
# Create GaussianNB objectmodel = GaussianNB()
# Train the model with training data model.fit(x_train, y_train)
# Make predictionspredicted_values = model.predict(x_test)
复制代码


5.支持向量机


在本例中,我们使用 SVM 库的 SVC 类。如果是 SVR,它就是一个回归函数:


# Import modulesfrom sklearn import svm
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted variable
x_test = test_dataset_precictor_variables
# Create SVM Classifier object model = svm.svc()
# Train the model with training data and checking the scoremodel.fit(x_train, y_train)model.score(x_train, y_train)
# Make predictionspredicted_values = model.predict(x_test)
复制代码


6.K- 最近邻


在 KneighborsClassifier 算法中,我们有一个超参数叫做 n_neighbors,就是我们对这个算法进行调整。


# Import modulesfrom sklearn.neighbors import KNeighborsClassifier
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted variable
x_test = test_dataset_precictor_variables
# Create KNeighbors Classifier Objects KNeighborsClassifier(n_neighbors = 6) # default value = 5
# Train the model with training datamodel.fit(x_train, y_train)
# Make predictionspredicted_values = model.predict(x_test)
复制代码


7.K- 均值


# Import modulesfrom sklearn.cluster import KMeans
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted variable
x_test = test_dataset_precictor_variables
# Create KMeans objects k_means = KMeans(n_clusters = 3, random_state = 0)
# Train the model with training datamodel.fit(x_train)
# Make predictionspredicted_values = model.predict(x_test)
复制代码


8.随机森林


# Import modulesfrom sklearn.ensemble import RandomForestClassifier
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted variable
x_test = test_dataset_precictor_variables
# Create Random Forest Classifier objects model = RandomForestClassifier()
# Train the model with training data model.fit(x_train, x_test)
# Make predictionspredicted_values = model.predict(x_test)
复制代码


9.降维


# Import modulesfrom sklearn import decomposition
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted variable
x_test = test_dataset_precictor_variables
# Creating PCA decomposition objectpca = decomposition.PCA(n_components = k)
# Creating Factor analysis decomposition objectfa = decomposition.FactorAnalysis()
# Reduc the size of the training set using PCAreduced_train = pca.fit_transform(train)
# Reduce the size of the training set using PCAreduced_test = pca.transform(test)
复制代码


10.梯度提升和 AdaBoost


# Import modulesfrom sklearn.ensemble import GradientBoostingClassifier
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted variable
x_test = test_dataset_precictor_variables
# Creating Gradient Boosting Classifier objectmodel = GradientBoostingClassifier(n_estimators = 100, learning_rate = 1.0, max_depth = 1, random_state = 0)
# Training the model with training data model.fit(x_train, x_test)
# Make predictionspredicted_values = model.predict(x_test)
复制代码


我们的工作将是把这些算法中的每一个块转化为一个项目。首先,定义一个业务问题,对数据进行预处理,训练算法,调整超参数,获得可验证的结果,在这个过程中不断迭代,直到我们达到满意的精度,做出理想的预测。


原文链接:


https://levelup.gitconnected.com/10-templates-for-building-machine-learning-models-with-notebook-282c4eb0987f

2021-05-20 16:012443

评论

发布
暂无评论
发现更多内容

FlyFish2.0版本后端源码学习笔记

云智慧AIOps社区

前端 大前端 数据可视化 大屏可视化

云原生小课堂 | 如何打造一款软硬兼施、多功能、零损耗的云原生网络方案

York

云原生 性能 智能网卡vpc 容器网络方案

租房开放源码

源字节1号

租房小程序

自开发 Web 应用如何使用 SAP Customer Data Cloud 实现自定义登入功能

汪子熙

用户权限 第三方登录 SAP 登录验证 5月月更

【刷题第七天】15 三数之和

白日梦

5月月更

【直播回顾】OpenHarmony知识赋能五期第四课——子系统音频解读

OpenHarmony开发者

OpenHarmony 多媒体

Docker下的OpenResty三部曲之二:细说开发

程序员欣宸

Docker 5月月更

C语言_结构体总结

DS小龙哥

5月月更

使用 OData 实施 SAP 系统与第三方系统集成的步骤概述

汪子熙

系统集成 SAP OData 5月月更 第三方系统

【高并发】高并发环境下诡异的加锁问题(你加的锁未必安全)

冰河

并发编程 多线程 高并发 协程 异步编程

封装格式介绍

Loken

音视频 5月月更

增强现实(AR)技术在企业管理软件中的一个实际创新案例

汪子熙

AR SAP 虚拟现实 增强现实 5月月更

前端生成PDF,让后端刮目相看

葡萄城技术团队

PDF pdf.js

Autograd解析|OneFlow学习笔记

OneFlow

人工智能 深度学习 数学原理 Autograd模块

C++搭建集群聊天室

爱好编程进阶

Java 程序员 后端开发

druid源码学习三-继续探究DruidDataSource类init方法

Nick

Apache Druid

专访朱雷:昔日的游戏少年,如今的Python工匠

图灵教育

Python 程序员 图灵访谈

从服务端生成Excel电子表格(Node.js+SpreadJS)

葡萄城技术团队

SpreadJS 前端表格

从服务端生成Excel电子表格(GcExcel + SpreadJS)

葡萄城技术团队

服务器端开发 前端表格控件 测试比较

如何让你的 WordPress 网站更安全

海拥(haiyong.site)

WordPress 5月月更

网站开发进阶(六十一)详解js中Number()、parseInt()和parseFloat()的区别

No Silver Bullet

5月月更 Number() parseInt() parseFloat()

浅析微服务全链路灰度解决方案

阿里巴巴云原生

阿里云 微服务 云原生 灰度

web前端培训单元测试入门知识分享

@零度

单元测试 web前端开发

三大特性,多个场景,Serverless 应用引擎 SAE 全面升级

阿里巴巴云原生

阿里云 Serverless SAE 阿里云云原生 应用引擎

Apache ShardingSphere 遇上得物“彩虹桥”

SphereEx

数据库 开源 ShardingSphere SphereEx apache 社区

20年清华扫地僧,整理的Storm、Spark学习笔记

爱好编程进阶

Java 程序员 后端开发

你肯定听说过requests,但你知道2022年有一个比 requests 还牛的爬虫库吗?

梦想橡皮擦

5月月更

【大数据培训】面试中数据仓库重要概念

@零度

数据仓库 大数据开发

答题交互功能深入研究

CRMEB

探讨企业知识管理的困惑

小炮

企业知识管理

java培训Nginx 快速入门

@零度

JAVA开发

如何用Python构建机器学习模型?_AI&大模型_Anello_InfoQ精选文章