写点什么

如何用 Python 构建机器学习模型?

  • 2021-05-20
  • 本文字数:3137 字

    阅读完需:约 10 分钟

如何用Python构建机器学习模型?

本文,我们将通过 Python 语言包,来构建一些机器学习模型。

构建机器学习模型的模板


该 Notebook 包含了用于创建主要机器学习算法所需的代码模板。在 scikit-learn 中,我们已经准备好了几个算法。只需调整参数,给它们输入数据,进行训练,生成模型,最后进行预测。

1.线性回归


对于线性回归,我们需要从 sklearn 库中导入 linear_model。我们准备好训练和测试数据,然后将预测模型实例化为一个名为线性回归 LinearRegression 算法的对象,它是 linear_model 包的一个类,从而创建预测模型。之后我们利用拟合函数对算法进行训练,并利用得分来评估模型。最后,我们将系数打印出来,用模型进行新的预测。


# Import modulesfrom sklearn import linear_model
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted_variable
x_test = test_dataset_precictor_variables
# Create linear regression objectlinear = linear_model.LinearRegression()
# Train the model with training data and check the scorelinear.fit(x_train, y_train)linear.score(x_train, y_train)
# Collect coefficientsprint('Coefficient: \n', linear.coef_)print('Intercept: \n', linear.intercept_)
# Make predictionspredicted_values = linear.predict(x_test)
复制代码

2.逻辑回归


在本例中,从线性回归到逻辑回归唯一改变的是我们要使用的算法。我们将 LinearRegression 改为 LogisticRegression。


# Import modulesfrom sklearn.linear_model import LogisticRegression
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted_variable
x_test = test_dataset_precictor_variables
# Create logistic regression objectmodel = LogisticRegression()
# Train the model with training data and checking the scoremodel.fit(x_train, y_train)model.score(x_train, y_train)
# Collect coefficientsprint('Coefficient: \n', model.coef_)print('Intercept: \n', model.intercept_)
# Make predictionspredicted_vaues = model.predict(x_teste)
复制代码


3.决策树


我们再次将算法更改为 DecisionTreeRegressor:


# Import modulesfrom sklearn import tree
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted_variable
x_test = test_dataset_precictor_variables
# Create Decision Tree Regressor Objectmodel = tree.DecisionTreeRegressor()
# Create Decision Tree Classifier Objectmodel = tree.DecisionTreeClassifier()
# Train the model with training data and checking the scoremodel.fit(x_train, y_train)model.score(x_train, y_train)
# Make predictionspredicted_values = model.predict(x_test)
复制代码


4.朴素贝叶斯


我们再次将算法更改为 DecisionTreeRegressor:


# Import modulesfrom sklearn.naive_bayes import GaussianNB
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted variable
x_test = test_dataset_precictor_variables
# Create GaussianNB objectmodel = GaussianNB()
# Train the model with training data model.fit(x_train, y_train)
# Make predictionspredicted_values = model.predict(x_test)
复制代码


5.支持向量机


在本例中,我们使用 SVM 库的 SVC 类。如果是 SVR,它就是一个回归函数:


# Import modulesfrom sklearn import svm
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted variable
x_test = test_dataset_precictor_variables
# Create SVM Classifier object model = svm.svc()
# Train the model with training data and checking the scoremodel.fit(x_train, y_train)model.score(x_train, y_train)
# Make predictionspredicted_values = model.predict(x_test)
复制代码


6.K- 最近邻


在 KneighborsClassifier 算法中,我们有一个超参数叫做 n_neighbors,就是我们对这个算法进行调整。


# Import modulesfrom sklearn.neighbors import KNeighborsClassifier
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted variable
x_test = test_dataset_precictor_variables
# Create KNeighbors Classifier Objects KNeighborsClassifier(n_neighbors = 6) # default value = 5
# Train the model with training datamodel.fit(x_train, y_train)
# Make predictionspredicted_values = model.predict(x_test)
复制代码


7.K- 均值


# Import modulesfrom sklearn.cluster import KMeans
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted variable
x_test = test_dataset_precictor_variables
# Create KMeans objects k_means = KMeans(n_clusters = 3, random_state = 0)
# Train the model with training datamodel.fit(x_train)
# Make predictionspredicted_values = model.predict(x_test)
复制代码


8.随机森林


# Import modulesfrom sklearn.ensemble import RandomForestClassifier
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted variable
x_test = test_dataset_precictor_variables
# Create Random Forest Classifier objects model = RandomForestClassifier()
# Train the model with training data model.fit(x_train, x_test)
# Make predictionspredicted_values = model.predict(x_test)
复制代码


9.降维


# Import modulesfrom sklearn import decomposition
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted variable
x_test = test_dataset_precictor_variables
# Creating PCA decomposition objectpca = decomposition.PCA(n_components = k)
# Creating Factor analysis decomposition objectfa = decomposition.FactorAnalysis()
# Reduc the size of the training set using PCAreduced_train = pca.fit_transform(train)
# Reduce the size of the training set using PCAreduced_test = pca.transform(test)
复制代码


10.梯度提升和 AdaBoost


# Import modulesfrom sklearn.ensemble import GradientBoostingClassifier
# Create training and test subsetsx_train = train_dataset_predictor_variablesy_train = train_dataset_predicted variable
x_test = test_dataset_precictor_variables
# Creating Gradient Boosting Classifier objectmodel = GradientBoostingClassifier(n_estimators = 100, learning_rate = 1.0, max_depth = 1, random_state = 0)
# Training the model with training data model.fit(x_train, x_test)
# Make predictionspredicted_values = model.predict(x_test)
复制代码


我们的工作将是把这些算法中的每一个块转化为一个项目。首先,定义一个业务问题,对数据进行预处理,训练算法,调整超参数,获得可验证的结果,在这个过程中不断迭代,直到我们达到满意的精度,做出理想的预测。


原文链接:


https://levelup.gitconnected.com/10-templates-for-building-machine-learning-models-with-notebook-282c4eb0987f

2021-05-20 16:013142

评论

发布
暂无评论
发现更多内容

区块链电子签章应用平台--助推企业数字化转型升级

13530558032

面对大规模 K8s 集群,如何先于用户发现问题?

阿里巴巴云原生

容器 云原生 k8s 监控 调度

Dubbo 四大角色

青年IT男

dubbo

Dubbo 服务注册与发现

青年IT男

dubbo

用C++ 和OpenCV 实现视频目标检测(YOLOv4模型)

博文视点Broadview

Dubbo 服务启动检查

青年IT男

dubbo

扩展 GRTN:云原生趋势下的 RTC 架构演进

阿里云CloudImagine

阿里云 云原生 RTC SRS流媒体服务器

ISO/IEC 5055:软件代码质量的标尺

华为云开发者联盟

软件 代码质量 源代码 ISO/IEC 软件质量模型

Dubbo快速入门

青年IT男

dubbo

RocketMQ NameServer工作原理与源码解析

HByte

RocketMQ

Coinbase上市意味着什么?

猫Buboo

马斯克的狗狗币实验

猫Buboo

B站HR炫耀资产、贬低面试者?无独有偶,校招污点事件记录帮你避雷

北游学Java

Java 面试

Dubbo 服务配置

青年IT男

dubbo

区块链食品溯源--为食品溯源认证

13530558032

源中瑞智慧党建系统,打造党建管理系模式

13530558032

Pytorch数据加载

Sakura

4月日更

LeetCode题解:73. 矩阵置零,栈,JavaScript,详细注释

Lee Chen

算法 大前端 LeetCode

What's new in dubbo-go v1.5.6

阿里巴巴云原生

开发者 云原生 dubbo 中间件 Go 语言

几个快速提升工作效率的小工具(Listary等)分享一下(强烈建议收藏)

码农飞哥

Python基础语法和数据类型最全总结

华为云开发者联盟

Python

Dubbo 入门简介

青年IT男

dubbo

40个问题让你快速掌握Java多线程的精髓

华为云开发者联盟

Java 多线程 synchronized Thread Semaphore

2021最全网页视频下载攻略 【建议收藏】

科技猫

软件 工具 网站 分享 视频处理

Dubbo 集群容错

青年IT男

dubbo

亲爱的开发者,您收到一个启动智能世界的魔方

白洞计划

合约交易所跟单,合约跟单社区开发

如何推进一个“以行动为导向的”事件驱动架构?

VoltDB

数据库 数据分析 实时数据分析 事件驱动架构

使用 rocketmq-spring-boot-starter 来配置、发送和消费 RocketMQ 消息

阿里巴巴云原生

容器 开发者 云原生 中间件 API

身边的最优化问题

PeterOne

人工智能 算法

Leveldb解读之四:Compaction

Jowin

leveldb

如何用Python构建机器学习模型?_AI&大模型_Anello_InfoQ精选文章