写点什么

实时计算框架 Flink 在教育行业的应用实践(上)

  • 2019-11-07
  • 本文字数:3176 字

    阅读完需:约 10 分钟

实时计算框架 Flink 在教育行业的应用实践(上)

如今,越来越多的业务场景要求 OLTP 系统能及时得到业务数据计算、分析后的结果,这就需要实时的流式计算如 Flink 等来保障。例如,在 TB 级别数据量的数据库中,通过 SQL 语句或相关 API 直接对原始数据进行大规模关联、聚合操作,是无法做到在极短的时间内通过接口反馈到前端进行展示的。若想实现大规模数据的“即席查询”,就须用实时计算框架构建实时数仓来实现。


本文通过一个教育行业的应用案例,剖析业务系统对实时计算的需求场景,并分析了 Flink 和 Spark 两种实现方式的异同,最后通过运用 UCloud UFlink 产品中封装的 SQL 模块,来加速开发效率,更快地完成需求。

1.1 业务场景简述

在这个 K12 教育的业务系统中,学生不仅局限于纸质的练习册进行练习,还可以通过各类移动终端进行练习。基于移动终端,可以更方便地收集学生的学习数据,然后通过大数据分析,量化学习状态,快速定位薄弱知识点,进行查缺补漏。


在这套业务系统中,学生在手机 App 中对老师布置的作业进行答题训练,每次答题训练提交的数据格式如下表所示:



例如,传入到后台的单条答题记录数据格式如下:


{  "student_id": "学生ID_16",  "textbook_id": "教材ID_1",  "grade_id": "年级ID_1",  "subject_id": "科目ID_2_语文",  "chapter_id": "章节ID_chapter_2",  "question_id": "题目ID_100",  "score": 2,  "answer_time": "2019-09-11 12:44:01",  "ts": "Sep 11, 2019 12:44:01 PM"}
复制代码


然后,基于上述实时流入的数据,需要实现如下的分析任务:


  • 实时统计每个题目被作答频次

  • 按照年级实时统计题目被作答频次

  • 按照科目实时统计每个科目下题目的作答频次

1.2 技术方案选型

针对上述几个需求点,设计了如下的方案。首先会将数据实时发送到 Kafka 中,然后再通过实时计算框架从 Kafka 中读取数据,并进行分析计算,最后将计算结果重新输出到 Kafka 另外的主题中,以方便下游框架使用聚合好的结果。


下游框架从 Kafka 中拿到聚合好的数据,并实时录入到 OLTP 的业务库中(例如:MySQL、UDW、HBase、ES 等),以便于接口将想要的结果实时反馈给前端。


中间的实时计算框架,则在 Flink 和 Spark 中选择。2018 年 08 月 08 日,Flink 1.6.0 推出,支持状态过期管理(FLINK-9510, FLINK-9938)、支持 RocksDB、在 SQL 客户端中支持 UDXF 函数,大大加强了 SQL 处理功能,同时还支持 DML 语句、支持基于多种时间类型的事件处理、Kafka Table Sink 等功能。随后推出的 Flink 1.6.x 系列版本中,进行了大量优化。这些使得 Flink 成为一个很好的选择。


早先 Spark 要解决此类需求,是通过 Spark Streaming 组件实现。为此需要先生成 RDD,然后通过 RDD 算子进行分析,或者将 RDD 转换为 DataSet\DataFrame、创建临时视图,并通过 SQL 语法或者 DSL 语法进行分析。相比之下显得不够便捷和高效。后来 Spark 2.0.0 新增了 Structured Streaming 组件,具有了更快的流式处理能力,可达到和 Flink 接近的效果。


架构如下图所示:



本篇将省略下游框架的操作,重点介绍 Flink 框架进行任务计算的过程(虚线框中的内容),并简述 Spark 的实现方法,便于读者理解其异同。

1.3 实时计算在学情分析系统中的具体实现

1.3.1 Flink 实践方案

1. 发送数据到 Kafka

后台服务通过 Flume 或后台接口触发的方式调用 Kafka 生产者 API,实时将数据发送到 Kafka 指定主题中。


例如发送数据如下所示:


{"student_id":"学生ID_16","textbook_id":"教材ID_1","grade_id":"年级ID_1","subject_id":"科目ID_2_语文","chapter_id":"章节ID_chapter_2","question_id":"题目ID_100","score":2,"answer_time":"2019-09-11 12:44:01","ts":"Sep 11, 2019 12:44:01 PM"}………
复制代码


提示:此处暂且忽略在 Kafka 集群中创建 Topic 的操作。

2. 编写 Flink 任务分析代码

使用 Flink 处理上述需求,需要将实时数据转换为 DataStream 实例,并通过 DataStream 算子进行任务分析,另外,如果想使用 SQL 语法或者 DSL 语法进行任务分析,则需要将 DataStream 转换为 Table 实例,并注册临时视图。


(1)构建 Flink env


env(StreamExecutionEnvironment) 是 Flink 当前上下文对象,用于后续生成 DataStream。代码如下所示:


val env = StreamExecutionEnvironment.getExecutionEnvironmentenv.setParallelism(3)
复制代码


(2)从 Kafka 读取答题数据


在 Flink 中读取 Kafka 数据需要指定 KafkaSource,代码如下所示:


val props = new Properties()props.setProperty("bootstrap.servers", "linux01:9092,linux02:9092,linux03:9092")props.setProperty("group.id", "group_consumer_learning_test01")
val flinkKafkaSource = new FlinkKafkaConsumer011[]("test_topic_learning_1", new SimpleStringSchema(), props)val eventStream = env.addSource[](flinkKafkaSource)
复制代码


(3)进行 JSON 解析


这里通过 map 算子实现 JSON 解析,代码示例如下:


val answerDS = eventStream.map(s => {  val gson = new Gson()  val answer = gson.fromJson(s, classOf[Answer])  answer})
复制代码


(4)注册临时视图


创建临时视图的目的,是为了在稍后可以基于 SQL 语法来进行数据分析,降低开发工作量。需要先获取 TableEnv 实例,再将 DataStream 实例转换为 Table 实例,最后将其注册为临时视图。代码如下所示:


val tableEnv = StreamTableEnvironment.create(env)val table = tableEnv.fromDataStream(answerDS)tableEnv.registerTable("t_answer", table)
复制代码


(5)进行任务分析


接下来,便可以通过 SQL 语句来进行数据分析任务了,3 个需求对应的分析代码如下所示:


//实时:统计题目被作答频次val result1 = tableEnv.sqlQuery(  """SELECT    |  question_id, COUNT(1) AS frequency    |FROM    |  t_answer    |GROUP BY    |  question_id  """.stripMargin)
//实时:按照年级统计每个题目被作答的频次val result2 = tableEnv.sqlQuery( """SELECT | grade_id, COUNT(1) AS frequency |FROM | t_answer |GROUP BY | grade_id """.stripMargin)
//实时:统计不同科目下,每个题目被作答的频次val result3 = tableEnv.sqlQuery( """SELECT | subject_id, question_id, COUNT(1) AS frequency |FROM | t_answer |GROUP BY | subject_id, question_id """.stripMargin)
复制代码


此时得到的 result1、result2、result3 均为 Table 实例。


(6)实时输出分析结果


接下来,将不同需求的统计结果分别输出到不同的 Kafka 主题中即可。


在 Flink 中,输出数据之前,需要先将 Table 实例转换为 DataStream 实例,然后通过 addSink 算子添加 KafkaSink 即可。


因为涉及到聚合操作,Table 实例需要通过 RetractStream 来转换为 DataStream 实例。


该部分代码如下所示:


tableEnv.toRetractStream[](result1)  .filter(_._1)  .map(_._2)  .map(new Gson().toJson(_))  .addSink(new FlinkKafkaProducer011[String]("linux01:9092,linux02:9092,linux03:9092",    "test_topic_learning_2",    new SimpleStringSchema()))
tableEnv.toRetractStream[](result2) .filter(_._1) .map(_._2) .map(new Gson().toJson(_)) .addSink(new FlinkKafkaProducer011[String]("linux01:9092,linux02:9092,linux03:9092", "test_topic_learning_3", new SimpleStringSchema()))
tableEnv.toRetractStream[](result3) .filter(_._1) .map(_._2) .map(new Gson().toJson(_)) .addSink(new FlinkKafkaProducer011[String]("linux01:9092,linux02:9092,linux03:9092", "test_topic_learning_4", new SimpleStringSchema()))
复制代码


(7)执行分析计划


Flink 支持多流任务同时运行,执行分析计划代码如下所示:


env.execute("Flink StreamingAnalysis")
复制代码


至此,编译并运行项目后,即可看到实时的统计结果,如下图所示,从左至右的 3 个窗体中,分别代表对应需求的输出结果。



2019-11-07 23:441329

评论

发布
暂无评论
发现更多内容

低代码平台中的分布式RPC框架(约3000行代码)

canonical

开源 dubbo RPC框架

Ableton Live Suite 11破解版下载 音乐制作软件

Rose

音乐制作 Ableton Live 11中文版 Live Suite 11破解 Ableton Live Suite下载

升级正当时,高性价比的影驰 GeForce RTX™ 4060 Ti 8G开箱评测

极客天地

常用的表格检测识别方法——表格结构识别方法(上)

合合技术团队

人工智能 深度学习 算法 人工智能文字识别 表格检测

玩转 LLMs 之「为什么不问问 Milvus」

Zilliz

Milvus 向量数据库 autogpt zillizcloud langchain

C语言编程—判断语句

芯动大师

SpringBoot + Docker 实现一次构建到处运行

Java你猿哥

Java Docker Spring Boot ssm 容器化部署

Mac视频后期特效工具 motion5 v5.6.4进行了额外修复和优化

Rose

mac软件下载 Motion 5 motion5中文 视频后期特效处理 Motion 5破解版

Logic Pro X(苹果专业音频制作软件)v10.7.8中文版

Rose

苹果mac软件下载 Logic Pro X下载 Logic Pro X破解 Logic Pro X教程 音频制作软件

苹果Mac视频转码编辑工具Compressor v4.6.4最新中文激活版

Rose

下载 fcpx Compressor Mac下载 苹果视频编码工具 Compressor破解版

视频后期特效处理软件:Motion 5 最新中文激活版

真大的脸盆

Mac Mac 软件 视频特效合成 视频特效工具 特效合成

基于 Log 的通用增量 Checkpoint 在美团的进展

Apache Flink

大数据 flink 实时计算

PoseiSwap IDO在Bounce上启动在即,如何参与?

西柚子

名侦探白洞(一):智能家居灵异事件

脑极体

AI 智能家居

如何使用Go实现代理模式

Jack

golang 设计模式

PoseiSwap IDO在Bounce上启动在即,如何参与?

股市老人

PoseiSwap IDO在Bounce上启动在即,如何参与?

鳄鱼视界

fastposter v2.15.0 从繁琐到简单,简洁好用的海报生成器

物有本末

FastApi Pillow 海报生成器 海报编辑器 海报小程序

Django笔记三十五之admin后台界面介绍

Hunter熊

Python django admin

有哪些好用的企业即时通讯软件值得推荐?

BeeWorks

2023年,Flutter3.10版本的变化有哪些?

没有用户名丶

小程序容器

以敏捷性为目标,构建良好企业生态

智达方通

数据驱动 数据孤岛 智达方通 全面预算管理 数据分析系统

CloudQuery v2.0.0 发布 新增数据保护、数据变更、连接管理等功能

BinTools图尔兹

数据库 国产数据库 版本发布

1.5万字+30张图盘点程序员面试必会MySQL索引常见的11个知识点

Java你猿哥

Java MySQL 数据 ssm 索引

WorkPlus AI助理 | 将企业业务场景与ChatGPT结合

BeeWorks

大模型总是「胡说八道」怎么办?手把手教你如何应对!

Zilliz

Milvus 向量数据库 ChatGPT zillizcloud langchain

耕升 GeForce RTX 4060 Ti 系列,为玩家带来DLSS3+1080P光追游戏体验!

极客天地

内部开发者平台|自建还是购买,企业应如何选择?

SEAL安全

平台工程 企业号 5 月 PK 榜 内部开发平台

2023-05-23:如果交换字符串 X 中的两个不同位置的字母,使得它和字符串 Y 相等, 那么称 X 和 Y 两个字符串相似。如果这两个字符串本身是相等的,那它们也是相似的。 例如,“tars“

福大大架构师每日一题

golang 算法 rust 福大大

什么是 Final Cut Pro? fcpx视频剪辑下载安装

Rose

Final Cut Pro下载 Final Cut Pro破解版 FCPX软件 fcpx Mac视频剪辑软件

实时计算框架 Flink 在教育行业的应用实践(上)_文化 & 方法_刘景泽_InfoQ精选文章