写点什么

实时计算框架 Flink 在教育行业的应用实践(上)

  • 2019-11-07
  • 本文字数:3176 字

    阅读完需:约 10 分钟

实时计算框架 Flink 在教育行业的应用实践(上)

如今,越来越多的业务场景要求 OLTP 系统能及时得到业务数据计算、分析后的结果,这就需要实时的流式计算如 Flink 等来保障。例如,在 TB 级别数据量的数据库中,通过 SQL 语句或相关 API 直接对原始数据进行大规模关联、聚合操作,是无法做到在极短的时间内通过接口反馈到前端进行展示的。若想实现大规模数据的“即席查询”,就须用实时计算框架构建实时数仓来实现。


本文通过一个教育行业的应用案例,剖析业务系统对实时计算的需求场景,并分析了 Flink 和 Spark 两种实现方式的异同,最后通过运用 UCloud UFlink 产品中封装的 SQL 模块,来加速开发效率,更快地完成需求。

1.1 业务场景简述

在这个 K12 教育的业务系统中,学生不仅局限于纸质的练习册进行练习,还可以通过各类移动终端进行练习。基于移动终端,可以更方便地收集学生的学习数据,然后通过大数据分析,量化学习状态,快速定位薄弱知识点,进行查缺补漏。


在这套业务系统中,学生在手机 App 中对老师布置的作业进行答题训练,每次答题训练提交的数据格式如下表所示:



例如,传入到后台的单条答题记录数据格式如下:


{  "student_id": "学生ID_16",  "textbook_id": "教材ID_1",  "grade_id": "年级ID_1",  "subject_id": "科目ID_2_语文",  "chapter_id": "章节ID_chapter_2",  "question_id": "题目ID_100",  "score": 2,  "answer_time": "2019-09-11 12:44:01",  "ts": "Sep 11, 2019 12:44:01 PM"}
复制代码


然后,基于上述实时流入的数据,需要实现如下的分析任务:


  • 实时统计每个题目被作答频次

  • 按照年级实时统计题目被作答频次

  • 按照科目实时统计每个科目下题目的作答频次

1.2 技术方案选型

针对上述几个需求点,设计了如下的方案。首先会将数据实时发送到 Kafka 中,然后再通过实时计算框架从 Kafka 中读取数据,并进行分析计算,最后将计算结果重新输出到 Kafka 另外的主题中,以方便下游框架使用聚合好的结果。


下游框架从 Kafka 中拿到聚合好的数据,并实时录入到 OLTP 的业务库中(例如:MySQL、UDW、HBase、ES 等),以便于接口将想要的结果实时反馈给前端。


中间的实时计算框架,则在 Flink 和 Spark 中选择。2018 年 08 月 08 日,Flink 1.6.0 推出,支持状态过期管理(FLINK-9510, FLINK-9938)、支持 RocksDB、在 SQL 客户端中支持 UDXF 函数,大大加强了 SQL 处理功能,同时还支持 DML 语句、支持基于多种时间类型的事件处理、Kafka Table Sink 等功能。随后推出的 Flink 1.6.x 系列版本中,进行了大量优化。这些使得 Flink 成为一个很好的选择。


早先 Spark 要解决此类需求,是通过 Spark Streaming 组件实现。为此需要先生成 RDD,然后通过 RDD 算子进行分析,或者将 RDD 转换为 DataSet\DataFrame、创建临时视图,并通过 SQL 语法或者 DSL 语法进行分析。相比之下显得不够便捷和高效。后来 Spark 2.0.0 新增了 Structured Streaming 组件,具有了更快的流式处理能力,可达到和 Flink 接近的效果。


架构如下图所示:



本篇将省略下游框架的操作,重点介绍 Flink 框架进行任务计算的过程(虚线框中的内容),并简述 Spark 的实现方法,便于读者理解其异同。

1.3 实时计算在学情分析系统中的具体实现

1.3.1 Flink 实践方案

1. 发送数据到 Kafka

后台服务通过 Flume 或后台接口触发的方式调用 Kafka 生产者 API,实时将数据发送到 Kafka 指定主题中。


例如发送数据如下所示:


{"student_id":"学生ID_16","textbook_id":"教材ID_1","grade_id":"年级ID_1","subject_id":"科目ID_2_语文","chapter_id":"章节ID_chapter_2","question_id":"题目ID_100","score":2,"answer_time":"2019-09-11 12:44:01","ts":"Sep 11, 2019 12:44:01 PM"}………
复制代码


提示:此处暂且忽略在 Kafka 集群中创建 Topic 的操作。

2. 编写 Flink 任务分析代码

使用 Flink 处理上述需求,需要将实时数据转换为 DataStream 实例,并通过 DataStream 算子进行任务分析,另外,如果想使用 SQL 语法或者 DSL 语法进行任务分析,则需要将 DataStream 转换为 Table 实例,并注册临时视图。


(1)构建 Flink env


env(StreamExecutionEnvironment) 是 Flink 当前上下文对象,用于后续生成 DataStream。代码如下所示:


val env = StreamExecutionEnvironment.getExecutionEnvironmentenv.setParallelism(3)
复制代码


(2)从 Kafka 读取答题数据


在 Flink 中读取 Kafka 数据需要指定 KafkaSource,代码如下所示:


val props = new Properties()props.setProperty("bootstrap.servers", "linux01:9092,linux02:9092,linux03:9092")props.setProperty("group.id", "group_consumer_learning_test01")
val flinkKafkaSource = new FlinkKafkaConsumer011[]("test_topic_learning_1", new SimpleStringSchema(), props)val eventStream = env.addSource[](flinkKafkaSource)
复制代码


(3)进行 JSON 解析


这里通过 map 算子实现 JSON 解析,代码示例如下:


val answerDS = eventStream.map(s => {  val gson = new Gson()  val answer = gson.fromJson(s, classOf[Answer])  answer})
复制代码


(4)注册临时视图


创建临时视图的目的,是为了在稍后可以基于 SQL 语法来进行数据分析,降低开发工作量。需要先获取 TableEnv 实例,再将 DataStream 实例转换为 Table 实例,最后将其注册为临时视图。代码如下所示:


val tableEnv = StreamTableEnvironment.create(env)val table = tableEnv.fromDataStream(answerDS)tableEnv.registerTable("t_answer", table)
复制代码


(5)进行任务分析


接下来,便可以通过 SQL 语句来进行数据分析任务了,3 个需求对应的分析代码如下所示:


//实时:统计题目被作答频次val result1 = tableEnv.sqlQuery(  """SELECT    |  question_id, COUNT(1) AS frequency    |FROM    |  t_answer    |GROUP BY    |  question_id  """.stripMargin)
//实时:按照年级统计每个题目被作答的频次val result2 = tableEnv.sqlQuery( """SELECT | grade_id, COUNT(1) AS frequency |FROM | t_answer |GROUP BY | grade_id """.stripMargin)
//实时:统计不同科目下,每个题目被作答的频次val result3 = tableEnv.sqlQuery( """SELECT | subject_id, question_id, COUNT(1) AS frequency |FROM | t_answer |GROUP BY | subject_id, question_id """.stripMargin)
复制代码


此时得到的 result1、result2、result3 均为 Table 实例。


(6)实时输出分析结果


接下来,将不同需求的统计结果分别输出到不同的 Kafka 主题中即可。


在 Flink 中,输出数据之前,需要先将 Table 实例转换为 DataStream 实例,然后通过 addSink 算子添加 KafkaSink 即可。


因为涉及到聚合操作,Table 实例需要通过 RetractStream 来转换为 DataStream 实例。


该部分代码如下所示:


tableEnv.toRetractStream[](result1)  .filter(_._1)  .map(_._2)  .map(new Gson().toJson(_))  .addSink(new FlinkKafkaProducer011[String]("linux01:9092,linux02:9092,linux03:9092",    "test_topic_learning_2",    new SimpleStringSchema()))
tableEnv.toRetractStream[](result2) .filter(_._1) .map(_._2) .map(new Gson().toJson(_)) .addSink(new FlinkKafkaProducer011[String]("linux01:9092,linux02:9092,linux03:9092", "test_topic_learning_3", new SimpleStringSchema()))
tableEnv.toRetractStream[](result3) .filter(_._1) .map(_._2) .map(new Gson().toJson(_)) .addSink(new FlinkKafkaProducer011[String]("linux01:9092,linux02:9092,linux03:9092", "test_topic_learning_4", new SimpleStringSchema()))
复制代码


(7)执行分析计划


Flink 支持多流任务同时运行,执行分析计划代码如下所示:


env.execute("Flink StreamingAnalysis")
复制代码


至此,编译并运行项目后,即可看到实时的统计结果,如下图所示,从左至右的 3 个窗体中,分别代表对应需求的输出结果。



2019-11-07 23:441512

评论

发布
暂无评论
发现更多内容

Module Federation在客服工单业务中的最佳实践

得物技术

前端 Module 模块 iframe Federation

后端开发【一大波干货知识】定时器方案红黑树,时间轮,最小堆

Linux服务器开发

定时器 后端开发 红黑树 时间轮 Linux服务器开发

博睿数据首批加入云科通明湖生态联盟,赋能信创生态谋未来

博睿数据

圆桌派来啦!与行业大咖聊聊Dapr的发展与实践

行云创新

云原生 dapr

数字产业化快于产业数字化?

BeeWorks

中国SaaS的增长真相|ToB大师课

ToB行业头条

领域驱动设计(DDD)靠谱么?

架构精进之路

DDD 4月日更 4月月更

【高并发】解密导致并发问题的第三个幕后黑手——有序性问题

冰河

并发编程 多线程 协程 异步编程 精通高并发系列

linux之ssh命令

入门小站

Linux

京东运动露营活动亮相首钢园,精彩持续整个四月

科技新消息

《数字经济全景白皮书》Z世代用户洞察篇(1)重磅发布!

易观分析

Z世代

适合中小企业的知识库软件有哪些?

小炮

知识管理

【Zeekr_Tech】汽车软件敏捷开发和分支管理

Zeekr_Tech

敏捷开发 智能驾驶

软件开发中的风险如何处理?

源字节1号

微信小程序 软件开发

智能化时代的数据集成技术革新

Apache SeaTunnel

大数据 开源 数据同步 Meetup Apache SeaTunnel

HertzBeat入GVP啦,并 v1.0.beta.7 发布,易用友好的云监控系统

TanCloud探云

开源 APM angular java;

无需编程,基于甲骨文oracle数据库零代码生成CRUD增删改查RESTful API接口

crudapi

oracle 零代码 API crud 增删改查

提升职场竞争力!低代码开发师(高级)认证发布

一只大光圈

低代码 数字化 钉钉宜搭 宜搭

PLG公司的机遇和挑战

LigaAI

SaaS LigaAI PLG

我真不信,这年头还有人能懂SpringBoot的ClassLoader加载机制

Java工程师

Java spring 程序员 科技

在线XML转JSON工具

入门小站

工具

互联网的下一站,大概率是能源

脑极体

EMQ 映云科技为抗疫项目提供全托管 MQTT 云服务免费使用

EMQ映云科技

物联网 IoT mqtt emq 抗疫

足不出户,搞定交付——独家交付秘籍(第二回)

阿里巴巴云原生

Apache flink - PartitionNotFoundException

GeekYin

flink 消费 kafak 错误排查

微信朋友圈的高性能复杂度

哈喽

「架构实战营」

机器人流程自动化评估体系全面助力垂直行业智能化转型

王吉伟频道

RPA 机器人流程自动化 信通院

预约中,2022京东云产业融合新品发布会线上开启

京东科技开发者

云计算 京东云 产品发布会 直播预约

netty系列之:netty中的核心解码器json

程序那些事

Java Netty 程序那些事 4月月更

实时计算框架 Flink 在教育行业的应用实践(上)_文化 & 方法_刘景泽_InfoQ精选文章