AICon 上海站|日程100%上线,解锁Al未来! 了解详情
写点什么

tensorflow 中 ASGD with Delay Compensation 优化器代码实现

  • 2019-11-29
  • 本文字数:8344 字

    阅读完需:约 27 分钟

tensorflow中ASGD with Delay Compensation优化器代码实现

一. DC-ASGD 算法介绍

此前,和大家也一起讨论过 DC-ASGD 算法,详细可见:https://zhuanlan.zhihu.com/p/80978479


DC-ASGD 算法主要解决的问题是:异步的随机梯度下降法(ASGD)在深度学习模型的训练中会存在 delayed gradients 的问题,就是当一个 worker 向参数 server 端提交它算出的梯度时,server 端其实已经被其它 worker 更新过好多次了。主要解决方案是利用梯度项的泰勒展开式去近似逼近 loss 函数的 Hessian 矩阵。


具体算法:


二. DC-ASGD 算法 tensorflow 实现

那么如何在 tensorflow 中实现 dc-asgd 算法呢?在上一篇文章中,我们讨论过 tensorflow 中 Optimizer 类的源码解析,其实就是为该篇文章做铺垫。接下来我们就具体分析下 Optimizer 的子类-DelayCompensatedGradientDescentOptimizer 类。


"""DelayCompensatedGradientDescentOptimizer for TensorFlow."""from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_function
from tensorflow.python.framework import opsfrom tensorflow.python.ops import array_opsfrom tensorflow.python.ops import control_flow_opsfrom tensorflow.python.ops import math_opsfrom tensorflow.python.ops import state_opsfrom tensorflow.python.training import optimizerfrom tensorflow.python.training import training_ops
GATE_NONE = 0GATE_OP = 1GATE_GRAPH = 2

class DelayCompensatedGradientDescentOptimizer(optimizer.Optimizer): """Optimizer that implements the DelayCompensatedGradientDescent algorithm. See [](https://arxiv.org/abs/1609.08326) ([](https://arxiv.org/pdf/1609.08326.pdf)). """
def __init__(self, learning_rate, variance_parameter=2.0, num_workers=1, use_locking=False, name="DelayCompensatedGradientDescentOptimizer"):
"""Construct a gradient descent optimizer with delay compensation. It is cricial to note the `num_workers` in constructor and `worker_index` in `minimize()` and `apply_gradients()`. Contrast to AdaMaxamOptimizer, the sparse implementation of this algorithm (used when the gradient is an IndexedSlices object, typically because of `tf.gather` or an embedding lookup in the forward pass) only updates variable slices and corresponding `shadow_t` term when that part of the variable was used in the forward pass. This means that the sparse behavior is contrast to the dense behavior (similar to some momentum implementations which ignore momentum unless a variable slice was actually used). Args: learning_rate: A Tensor or a floating point value. The learning rate. variance_parameter: A Tensor or a floating point value. The variance control parameter. num_workers: A int value. The number of workers. use_locking: If True use locks for update operations. name: Optional name for the operations created when applying gradients. Defaults to "DelayCompensatedGradientDescentOptimizer". """ num_workers = self._call_if_callable(num_workers) if num_workers <= 0: raise ValueError("num_workers must be positive: %s" % num_workers) super(DelayCompensatedGradientDescentOptimizer, self).__init__(use_locking, name) self._lr = learning_rate self._lambda = variance_parameter self._num_workers = num_workers self._learning_rate_tensor = None self._lambda_tensor = None self._use_locking = use_locking
def _create_slots(self, var_list): for index in range(self._num_workers): for v in var_list: self._zeros_slot(v, "shadow_{0}".format(index), self._name)
def _prepare(self): lr = self._call_if_callable(self._lr) lambda_ = self._call_if_callable(self._lambda)
self._learning_rate_tensor = ops.convert_to_tensor(lr, name="learning_rate") self._lambda_tensor = ops.convert_to_tensor(lambda_, name="lambda")
def _apply_dense(self, grad, var):
shadow = self.get_slot(var, "shadow_{0}".format(self.worker_index)) return training_ops.apply_delay_compensated_gradient_descent( var, math_ops.cast(self._learning_rate_tensor, grad.dtype.base_dtype), grad, math_ops.cast(self._lambda_tensor, grad.dtype.base_dtype), shadow, use_locking=self._use_locking).op
def _resource_apply_dense(self, grad, var):
shadow = self.get_slot(var, "shadow_{0}".format(self.worker_index)) return training_ops.resource_apply_delay_compensated_gradient_descent( var.handle, math_ops.cast(self._learning_rate_tensor, grad.dtype.base_dtype), grad, math_ops.cast(self._lambda_tensor, grad.dtype.base_dtype), shadow.handle, use_locking=self._use_locking)
def _apply_sparse_shared(self, grad, var, indices):
shadow = self.get_slot(var, "shadow_{0}".format(self.worker_index)) # if shadow is None: # raise ValueError("None shadow with index = " + str(self.worker_index) + " and var = " + str(var)) lambda_ = math_ops.cast(self._lambda_tensor, var.dtype.base_dtype) lr = math_ops.cast(self._learning_rate_tensor, var.dtype.base_dtype)
var_slice = array_ops.gather(var, indices) shadow_slice = array_ops.gather(shadow, indices)
var_scaled_g_values = lr * (grad + lambda_ * grad * grad * (var_slice - shadow_slice))
var_t = state_ops.scatter_add(var, indices, -var_scaled_g_values, use_locking=self._use_locking)
with ops.control_dependencies([var_t]): shadow_t = state_ops.assign(shadow, var_t)
return control_flow_ops.group(*[var_t, shadow_t])
def _apply_sparse(self, grad, var): return self._apply_sparse_shared( grad.values, var, grad.indices)
def _resource_apply_sparse(self, grad, var, indices): return self._apply_sparse_shared( grad, var, indices)
def minimize(self, loss, global_step=None, var_list=None, gate_gradients=GATE_OP, aggregation_method=None, colocate_gradients_with_ops=False, name=None, grad_loss=None, worker_index=0): self.worker_index = worker_index return super(DelayCompensatedGradientDescentOptimizer, self).minimize(loss=loss, global_step=global_step, var_list=var_list, gate_gradients=gate_gradients, aggregation_method=aggregation_method, colocate_gradients_with_ops=colocate_gradients_with_ops, name=name, grad_loss=grad_loss)
def apply_gradients(self, grads_and_vars, global_step=None, name=None, worker_index=0): self.worker_index = worker_index return super(DelayCompensatedGradientDescentOptimizer, self).apply_gradients(grads_and_vars=grads_and_vars,
复制代码


                                                                                 global_step=global_step, name=name)
复制代码


_create_slots 函数用来创建一些额外的参数,这里创建的是每一个 worker 上的每一个 variable 所对应的备份变量 shadow。_prepare 函数用来准备优化器的常规超参数。


我们重点关注下_apply_sparse 函数,该函数调用的是_apply_sparse_shared 函数,参数 grad 的数据类型是 IndexedSlices 类型,那么什么是 IndexedSlices 类型呢?这里 Slice 的意思是从 Tensor 里面取特定的一些下标得到原先 tensor 变量的一部分,比如说原来的 tensor 的 shape 是[10,10],取下标[0]得到一个[10]的 Tensor,这个 Tensor 就是原 Tensor 的一个 Slice。那么 IndexedSlices 其实就是一堆 Slices 和它们所对应的下标(也就是 Index)。在梯度更新过程中,如果只需要更新某几行的梯度值,就可以将梯度表示成这种数据结构,来节省计算资源。


所以_apply_sparse_shared 函数参数传入的是 grad.values 和 grad.indices,分别表示特定行的梯度值和行的下标。在计算梯度项时:var_scaled_g_values = lr *(grad + lambda_ * grad * grad *(var_slice - shadow_slice)),也需要先求出特定行的 var_slice 和 shadow_slice。然后根据求出的梯度项更新参数时:var_t = state_ops.scatter_add(var, indices,-var_scaled_g_values, use_locking=self._use_locking),也是在特定的那些行(根据 indices 确定的)做更新。


当这一轮的参数做完更新后,需要将当前时刻的变量 var_t 备份一下,以用于下一时刻的参数更新:shadow_t = state_ops.assign(shadow, var_t)。最后将 var_t, shadow_t 的更新操作放进 control_flow_ops 中。


我们举一个简单的 example 来说明一下这种 IndexedSlices 类型的梯度是怎么更新的:


import numpy as npimport tensorflow as tffrom tensorflow.python.framework import constant_opfrom tensorflow.python.framework import opsfrom tensorflow.python.ops import variablesfrom tensorflow.python.training import adam

if __name__ == '__main__': value_a = np.ones(shape=[3, 10]) indices_a = np.array([0, 3, 8]) dense_shape_a = [10, 10] grad_slices_a = ops.IndexedSlices(constant_op.constant(value_a), constant_op.constant(indices_a), constant_op.constant(dense_shape_a))
var_np = np.ones(shape=[10, 10])
var0 = variables.RefVariable(var_np) opt = adam.AdamOptimizer() update = opt.apply_gradients(zip([grad_slices_a], [var0])) # variables.global_variables_initializer().run() sess = tf.Session() sess.run(tf.global_variables_initializer()) print("initial variable is:", sess.run(var0)) sess.run(update) print("update 1 time variable is:", sess.run(var0))

输出:initial variable is: [[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]update 1 time variable is: [[0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ] [0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ] [0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999] [1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ]]
复制代码


可以很清楚地看到,执行一次梯度更新之后,只有 0,3,8 这三行的变量值发生了改变。这就是使用 IndexedSlices 类型的优势。


另外,training_ops.apply_delay_compensated_gradient_descent 这个函数是在 tensorflow/core/kernels/training_ops.cc 中实现的,核心代码如下:


template <typename T>struct ApplyDelayCompensatedGradientDescent<CPUDevice, T> {  void operator()(const CPUDevice& d, typename TTypes<T>::Flat var,                   typename TTypes<T>::ConstScalar lr,                   typename TTypes<T>::ConstFlat grad,                   typename TTypes<T>::ConstScalar variance,                   typename TTypes<T>::Flat shadow) {    var.device(d) -= lr() * (grad + variance() * grad * grad * (var - shadow));    shadow.device(d) = var;  }};
复制代码


其实除了这两个文件之外,还需要写一下注册 ApplyDelayCompensatedGradientDescent 的 OP 接口,这里就不详细讲解了。

三.如何使用 DC-ASGD 算法

在 tensorflow 源码目录中修改或添加完 dc-asgd 算法的几个相关文件后,需要重新编译一下 tensorflow。编译成功后,就可以愉快地使用 dc-asgd 算法的接口啦。


下面给大家举一个使用 DelayCompensatedGradientDescentOptimizer 优化器的分布式训练 demo:


from __future__ import print_function, absolute_import, division
import tensorflow as tf
tf.app.flags.DEFINE_string("ps_hosts", "localhost:2222", "ps hosts")tf.app.flags.DEFINE_string("worker_hosts", "localhost:2223,localhost:2224", "worker hosts")tf.app.flags.DEFINE_string("job_name", "worker", "'ps' or'worker'")tf.app.flags.DEFINE_integer("task_index", 0, "Index of task within the job")tf.app.flags.DEFINE_integer("num_workers", 2, "Number of workers")tf.app.flags.DEFINE_boolean("is_sync", False, "using synchronous training or not")
FLAGS = tf.app.flags.FLAGS

def model(images): """Define a simple mnist classifier""" net = tf.layers.dense(images, 500, activation=tf.nn.relu) net = tf.layers.dense(net, 500, activation=tf.nn.relu) net = tf.layers.dense(net, 10, activation=None) return net

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()x_train = x_train.reshape(-1, 784).astype('float32')x_test = x_test.reshape(-1, 784).astype('float32')x_train /= 255x_test /= 255

def get_batch(image, label, batch_size=32, training=True): df = tf.data.Dataset.from_tensor_slices((image, label)) if training: df = df.repeat(10).shuffle(buffer_size=1000) df = df.batch(batch_size).prefetch(batch_size) iterator = df.make_one_shot_iterator() batch_x, batch_y = iterator.get_next() return batch_x, batch_y

def main(_): ps_hosts = FLAGS.ps_hosts.split(",") worker_hosts = FLAGS.worker_hosts.split(",")
# create the cluster configured by `ps_hosts' and 'worker_hosts' cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})
# create a server for local task server = tf.train.Server(cluster, job_name=FLAGS.job_name, task_index=FLAGS.task_index)
train_batch_x, train_batch_y = get_batch(x_train, y_train) test_batch_x, test_batch_y = get_batch(x_test, y_test, training=False)
if FLAGS.job_name == "ps": server.join() # ps hosts only join elif FLAGS.job_name == "worker": # workers perform the operation # ps_strategy = tf.contrib.training.GreedyLoadBalancingStrategy(FLAGS.num_ps)
# Note: tf.train.replica_device_setter automatically place the paramters (Variables) # on the ps hosts (default placement strategy: round-robin over all ps hosts, and also # place multi copies of operations to each worker host with tf.device(tf.train.replica_device_setter(worker_device="/job:worker/task:%d" % FLAGS.task_index, cluster=cluster)):
logits = model(train_batch_x) loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=tf.one_hot(train_batch_y, 10)))
# The StopAtStepHook handles stopping after running given steps. hooks = [tf.train.StopAtStepHook(last_step=10000)]
global_step = tf.train.get_or_create_global_step() #optimizer = tf.train.AdamOptimizer(learning_rate=1e-04) optimizer = tf.contrib.opt.DelayCompensatedGradientDescentOptimizer(learning_rate=0.001)
if FLAGS.is_sync: # asynchronous training # use tf.train.SyncReplicasOptimizer wrap optimizer # ref: https://www.tensorflow.org/api_docs/python/tf/train/SyncReplicasOptimizer optimizer = tf.train.SyncReplicasOptimizer(optimizer, replicas_to_aggregate=FLAGS.num_workers, total_num_replicas=FLAGS.num_workers) # create the hook which handles initialization and queues hooks.append(optimizer.make_session_run_hook((FLAGS.task_index == 0)))
train_op = optimizer.minimize(loss, global_step=global_step)
# The MonitoredTrainingSession takes care of session initialization, # restoring from a checkpoint, saving to a checkpoint, and closing when done # or an error occurs. with tf.train.MonitoredTrainingSession(master=server.target, is_chief=(FLAGS.task_index == 0), checkpoint_dir="./checkpoint_dir", hooks=hooks) as mon_sess: while not mon_sess.should_stop(): # mon_sess.run handles AbortedError in case of preempted PS. _, ls, step = mon_sess.run([train_op, loss, global_step]) if step % 100 == 0: print("Train step %d, loss: %f" % (step, ls))

if __name__ == "__main__": tf.app.run()
复制代码


启动命令是:


python dc_asgd_exp.py --ps_hosts=localhost:2222 --worker_hosts=localhost:2224 --job_name=ps --task_index=0python dc_asgd_exp.py --ps_hosts=localhost:2222 --worker_hosts=localhost:2224 --job_name=worker --task_index=0
复制代码


参考文献:


https://zhuanlan.zhihu.com/p/80978479


https://zhuanlan.zhihu.com/p/87348147


https://www.zhihu.com/question/277403551


https://zhuanlan.zhihu.com/p/35083779


本文转载自 Alex-zhai 知乎账号。


原文链接:https://www.zhihu.com/people/alex-zhai-19/posts


2019-11-29 08:00895

评论

发布
暂无评论
发现更多内容

超硬核!阿里技术大牛肝了2晚整理的Java知识,这也太强了!

飞飞JAva

Java Java泛型

【人间碎片】关于努力这件事

南吕

人生修炼 人生故事

Redis-技术专题-Redis分布式锁实现方案

码界西柚

redis 分布式锁 5月日更

【LeetCode】砖墙Java题解

Albert

算法 LeetCode 5月日更

模块三作业

c

架构实战营

白嫖福利!阿里P7大神梳理的Java数组详细知识点,太实用了

飞飞JAva

Java

软件开发不同阶段的命名风格

顿晓

5月日更 命名 风格

当你觉得老板的决策是错的,你会怎么做?

石云升

职场经验 5月日更

数字化转型能力成为中国纺织服装业未来发展的核心动能

CECBC

纺织面料

未来5年或将出现颠覆型区块链应用,资产通证化将重构实体经济

CECBC

区块链

【音视频】弱网下的音视频通讯

Bob

音视频 直播技术

名可名

顿晓

5月日更 命名

OAuth 2.0 了解了,OAuth 2.1 呢?

Zhang

OAuth 2.0 认证授权 OAuth 2.1

网络攻防学习笔记 Day2

穿过生命散发芬芳

5月日更 网络攻防

我与 InfoQ 写作平台的这些事

xcbeyond

个人成长 1 周年盛典 InfoQ 写作平台 1 周年 5月日更

算法训练营 - 学习笔记 - 第四周

心在飞

清华学霸!用18行代码讲解Java接口,程序员:果然厉害,学到了

牛哄哄的java大师

Java 接口

Redis-技术专区-知识问题总结大全(上篇)

码界西柚

redis 5月日更 问题分析

限时白嫖!腾讯内部员工培训Java资料,网友:大厂就是不一样

牛哄哄的java大师

Java

通向未来的十二个趋势

CECBC

人工智能

高级研发工程师都有哪些特点?【超级准】

liuzhen007

技术人生 工作体会 程序猿

如何提升工作效率

wangwei1237

工作效率 文化 大历史理论

让 Go 代码跑上移动端

Rayjun

Go 语言 gomobile

SwiftUI @ Netflix:推动新技术落地是怎样一种体验?

故胤道长

swift 移动开发 iOS Developer SwiftUI

3.5 Go语言从入门到精通:标准输入输出fmt包

xcbeyond

Go 语言 5月日更 fmt包

多家银行增设数字金融部 架构调整背后透露出哪些信号?

CECBC

银行

区块链如何推动人力资源和薪酬管理体系变革?

CECBC

人力资源

【JS】作用域(入门篇)

德育处主任

JavaScript 大前端 Web js

微服务-技术专题-微服务进程间通信

码界西柚

微服务 分布式架构 5月日更

顺序一致性(Sequential Consistency)

UNDEFINED

sequential consistency Java Concurrency distributed system

把复杂留给自己,简单留给用户

石云升

5月日更

tensorflow中ASGD with Delay Compensation优化器代码实现_语言 & 开发_Alex-zhai_InfoQ精选文章