AI 年度盘点与2025发展趋势展望,50+案例解析亮相AICon 了解详情
写点什么

轻松上手 UAI-Train,拍拍贷人脸识别算法优化效率提升 85.7%

  • 2019-11-11
  • 本文字数:1788 字

    阅读完需:约 6 分钟

轻松上手UAI-Train,拍拍贷人脸识别算法优化效率提升85.7%

“UAI-Train 平台可以让我们方便地在短时内使用大量的 GPU 资源,用较低的成本训练海量的数据集,提高算法模型迭代优化的效率。”

— 拍拍贷算法研究员 朱运

UAI-Train 是什么

UAI-Train 是面向 AI 训练任务的大规模分布式计算平台,基于 P40、V100 等 GPU 云主机集群,通过分布式扩展,最高可实现 192TFlops 的单精度计算能力。提供一站式训练任务托管服务,可自动化解决计算节点调度、训练环境准备、数据上传下载以及任务容灾等问题,并支持按需收费、成本可控,无需担心资源浪费。在视频图像识别、自然语言处理、语音处理等领域均已有诸多实践。

拍拍贷接入 UAI-Train 的效果

通过使用分布式 GPU 训练平台,700W 人脸数据的模型训练所需时长可从原先的一周缩短至一天,整体算法优化效率提升 85.7%,相应的迭代频率也提高数倍,为更深层次的模型结构试验提供了可能。同时 UAI-Train 平台备有大量 GPU 资源,拍拍贷的算法工程师可以同时探索多种算法模型结构,极大缩短初期算法结构探索的时间。最重要的是 UAI-Train 平台具备按需收费的特性,拍拍贷人脸识别算法的 GPU 资源成本可由原先的上万元/月,下降至数千元/月,GPU 资源的有效利用率也达到了 100%。



表:UAI-Train 与购买 GPU 资源的特性对比

关于拍拍贷

拍拍贷是一家行业领先的金融科技公司,同时也是一家非常注重技术驱动、强调自主研发的高科技公司。一直以来非常重视 AI 技术的探索和应用,涉及到计算机视觉、语音分析和建模、自然语言处理、复杂网络分析等针对特定非结构化数据的领域,并将迁移学习、主动学习、强化学习、多任务学习、在线学习、非监督半监督等各种机器学习算法应用至多种业务场景。尤其是人脸识别、OCR、不良中介识别和欺诈团伙挖掘、智能对话机器人、社交文本挖掘等项目,在实际的业务实践中取得了不俗的效果,极大地提升了风险反欺诈水平和运营效率。

人脸识别

人脸识别是拍拍贷 AI 技术的一个重要研究方向,它通过算法识别人的脸部特征,从而可以做到实时地从图片或者视频流中检测和追踪特定的人。


目前拍拍贷自研人脸识别算法,在 700W 规模多年龄段、多姿态、多表情、多环境的人脸图片上进行训练。通过尝试不同的网络结构,包含 Inception-v3、优化后的 resnet 等,以及多种损失函数,例如 triplet_loss、sphere、cosine、arc_loss 等来优化人脸识别算法,从而提升 1:1 人脸认证、1:N 人脸搜索、N:N 人脸交叉比对、人脸聚类等场景的识别精度,并将此类技术应用于拍拍贷的风险监控、反欺诈等业务,并发挥了重要作用。



图:人脸识别业务场景

面临的问题

算法人员在优化人脸识别算法的过程中发现使用单台 GPU 机器迭代一次算法需要一周左右的时间,效率过低影响研发进度,但是采购更多的 GPU 机器来探索不同算法会导致资源成本线性增长;此外由于算法调优工作涉及诸多研究内容,例如算法效果分析、新算法调研、开发等,实际的资源使用率不高。

接触 UAI-Train

在一次线下技术交流活动中,拍拍贷技术人员了解到 UCloud 提供一种面向人工智能算法训练的 UAI-Train 平台,并支持 GPU 资源的按需租售服务,同时该平台上还可执行多机多卡的分布式训练任务。


为了提升模型训练的效率,充分高效地利用更多的新数据来进一步提高其准确率,拍拍贷抉择后选择尝试 UAI-Train 平台。UCloud AI 团队在 GitHub 上发布了适配 UAI-Train 平台的 Insightface 开发案例,用于协助拍拍贷的算法工程师很方便地将单机的人脸识别算法转化成支持分布式训练的人脸识别算法,并成功在 UAI-Train 平台上进行算法的快速优化。


Insightface 是 GitHub 上一个基于 MXNet 框架的开源人脸识别项目。UCloud 基于 insightface 开发了一整套能支持分布式训练的人脸识别训练和在线推理的案例代码,并发布在GitHub上,其中包括基于 MXNet 框架的代码及开发案例。拍拍贷的工程师基于该案例,结合自身人脸识别算法的实现和数据,一周时间内就完成了开发和调试,并顺利在 UAI-Train 平台上逐步展开人脸识别算法的训练迭代工作。



图:人脸识别算法接入过程


在多次算法优化迭代尝试后,拍拍贷通过利用高维向量表征人脸,余弦距离表达相似度,最终在开源测试集准确率表现为:lfw 99.8%, cfp_fp 97%, agedb_30 98.2% ,实际业务应用中的准确率高达 99%以上,进一步提升了风险监管、反欺诈等业务的效率。


本文转载自公众号 UCloud 技术(ID:ucloud_tech)。


原文链接:


https://mp.weixin.qq.com/s/I1Ts8R4_vHCTB6kOWNo3yQ


2019-11-11 10:39858

评论

发布
暂无评论
发现更多内容

什么是架构

天天向上

架构实战营

模块一作业

zjluoyue

电商微服务拆分

白开水又一杯

#架构实战营

Spring版本命名规则

Tom弹架构

Java spring 架构

10分钟搞懂事件驱动API

俞凡

架构 API

指标统计:基于流计算 Oceanus(Flink) 实现实时 UVPV 统计

腾讯云大数据

大数据 流计算 Oceanus

软件架构设计原则之合成复用原则

Tom弹架构

Java 架构 设计模式 设计原则

拆分电商系统为微服务

缘分呐

微服务 电商系统

学生管理系统

Mars

架构实战营 模块一

学生管理系统架构设计

天天向上

架构实战营

架构实战营总结

gawaine

架构实战营

软件架构设计原则之开闭原则

Tom弹架构

Java 架构 设计模式 设计原则

软件架构设计原则之迪米特法则

Tom弹架构

Java 架构 设计模式 设计原则

模块6作业

4anonymous

web安全:mysql提权总结篇

网络安全学海

黑客 网络安全 信息安全 渗透测试 WEB安全

软件架构设计原则之里氏替换原则

Tom弹架构

Java 架构 设计模式 设计原则

模块一作业

hhh

「架构实战营」

软件架构设计原则之依赖倒置原则

Tom弹架构

Java 架构 设计模式 设计原则

软件架构设计原则之接口隔离原则

Tom弹架构

Java 架构 设计模式 设计原则

这样学BAT必面之软件设计原则,还不会就是我的问题

Tom弹架构

Java 架构 面试 设计模式 设计原则

电商系统微服务拆分

michael

架构实战营

模块六作业

potti

随便谈一下kafka消息队列

Regan Yue

kafka 10月月更

架构实战营 拆分电商系统为微服务

💤 ZZzz💤

架构实战营

架构实战训练营模块一

人生就是梦

架构实战营

软件架构设计原则之单一职责原则

Tom弹架构

Java 架构 设计模式 设计原则

【架构实战营作业】模块六——创业公司电商微服务架构

聆息

ZK(ZooKeeper)分布式锁实现

牧小农

zookeeper ZooKeeper原理 zookeeper分布式锁

架构实战营-第三期-模块一作业

岚哲

极客时间 架构 架构实战营

Vue进阶(幺肆玖):template 标签

No Silver Bullet

Vue 模板 占位符 10月月更

HMS的舞者们,在智能世界的舞台

脑极体

轻松上手UAI-Train,拍拍贷人脸识别算法优化效率提升85.7%_文化 & 方法_UCloud技术_InfoQ精选文章