写点什么

微软赢麻了!联合 Meta 重磅发布开源、可直接商用大模型 Llama 2,网友:OpenAI 感觉如何?

  • 2023-07-19
    北京
  • 本文字数:4163 字

    阅读完需:约 14 分钟

微软赢麻了!联合Meta 重磅发布开源、可直接商用大模型Llama 2,网友:OpenAI 感觉如何?

2 月份,Meta “泄露”的 LLaMA 模型在开源 LLM 领域掀起了一股创新浪潮,但只有一个问题:不能用于商业目的。现在,Meta 改变了这一点。

 

7 月 19 日,Meta 终于发布了大家期待已久的免费可商用版本大模型 Llama 2。Meta 本次发布的 Llama 2 模型系列包含 70 亿、130 亿和 700 亿三种参数变体。此外,团队还训练了 340 亿参数变体,但并没有发布,只在 Llama 2 相关论文中提到了。

 

据介绍,Llama 2 的预训练语料库大小增加了 40%,Llama 2 接受了 2 万亿个 token 的训练,精调 Chat 模型在 100 万人类标记数据上训练,上下文长度是 Llama 1 的两倍,并采用了分组查询注意力机制(Ainslie et al)。

快了,但还有“幻觉”?

 

我们先看下网上目前一些体验者的感受。推特上有人使用后表示,生成内容“目前最快”。


00:00 / 00:00
    1.0x
    • 3.0x
    • 2.5x
    • 2.0x
    • 1.5x
    • 1.25x
    • 1.0x
    • 0.75x
    • 0.5x
    网页全屏
    全屏
    00:00


    但有网友反映在回答问题时还是遇到了“幻觉”。从事艺术方面工作的Glenn Galen表示,“当我问它关于我自己的时候,它真的产生了幻觉,那个来自明尼阿波利斯的艺术家。非常奇怪、非常快,差不多就是瞬间,但是非常不正确。”

     

    NVIDIA 高级人工智能科学家Jim Fan在推特上指出,Llama-2 还没有达到 GPT-3.5 的水平,这主要是因为它的编码能力较弱。在“HumanEval”(标准编码基准)上,它远不如 StarCoder 和很多其他专门为编码设计的模型。但由于它的开放权重,Llama-2 将显著改善。

     

    Jim 对 Meta 团队在人工智能安全问题的负责表示称赞,“Meta 的团队在 AI 安全问题上做得非常出色。事实上,这篇论文几乎有一半的篇幅都在讨论安全护栏、红队和评估。为这样负责任的努力鼓掌!”Jim 预计,Llama-2 的训练成本可能超过 2000 万美元。

     

    Jim 还称赞 Meta 发布的长达 76 页的论文是“一部杰作”。“与 GPT-4 的论文分享的信息很少不同,Llama-2 详细说明了整个过程,包括模型详细信息、训练阶段、硬件、数据管道和注释过程。例如,对 RLHF 的效果进行了系统分析,并具有良好的可视化效果。”至少在这方面,我们确实看到了 Meta 团队的诚意。

     

    AI 领域,“权力的游戏”

     

    值得注意的是,在微软 Inspire 大会上,Meta 和微软宣布在 Azure 和 Windows 上支持 Llama 2 大型语言模型(LLM)系列。Llama 2 已经在Azure AI 模型目录中可用,使用 Microsoft Azure 的开发人员可以使用它进行构建,并利用他们的云原生工具进行内容过滤和安全功能。而 Windows 开发人员将能够通过GitHub Repo使用 Llama 2 构建新的体验。借助 Windows Subsystem for Linux 和高性能 GPU,开发人员可以在 Windows PC 上对 LLM 进行微调来满足特定需求。


    对此,有网友戏谑 OpenAI 道,“微软和 Meta 已经深入研究沉浸式计算。微软也是过去几年开源的最大支持者之一,所以这也是理所当然的。我确实想知道 OpenAI 感觉如何?”

     

    友“Alex Valaitis”则分析称,这可能会扼杀许多开源 LLM 初创公司,Mosaic、Red Pajama 等遇到了大麻烦。同时,这进一步加强了微软在 AI 领域的主导地位。通过这种合作关系,微软现在与顶级 LLMs(OpenAI、Meta)建立了独家合作伙伴关系,优先获得英伟达 GPU 以及 GitHub 和 Azure 等战略资产。人工智能“权力的游戏”刚刚发生了另一个转折。

     

    另外,Llama 2 还可以通过亚马逊云科技(AWS)、Hugging Face 和其他提供商获得。a16z-infra 发布了a16z-infra/llama13b-v2-chat ,提供了对新的 Llama 2 13B 聊天模型的 Replicate API 访问。

     

    不过,需要提醒开发者的是,Llama 2 仍然有一些有趣的限制,比如不得使用 Llama 材料或 Llama 材料的任何输出结果来改进任何其他大型语言模型(不包括 Llama 2 或其衍生模型);在 Llama 2 版本发布之日,被许可方或被许可方关联公司提供的产品或服务,如果每月活跃用户数在上一个日历月中超过 7 亿,则必须向 Meta 申请许可证,Meta 可以自行决定是否授权。

     

    这也被认为是 Meta 针对竞争对手制定的策略,因为上述限制对大多数人并没有影响。

    Llama 2 的诞生



    上图为 Llama 2-Chat 的训练过程。Meta 首先使用公开在线资源对 Llama 2 进行预训练。之后,通过监督微调(SFT)的方法创建出 Llama 2-Chat 的初始版本。随后,配合人类反馈强化学习(RLHF)方法,特别是通过拒绝采样与近端策略优化(PPO)对模型进行迭代完善。在整个 RLHF 阶段,迭代奖励建模数据的积累与模型增强之间的同步推进,是保证奖励模型始终保持在分布范围之内的关键。

    预训练

     

    Llama 2 的训练语料库包含来自公开来源的新数据组合,但不涉及来自 Meta 产品或服务的数据。Meta 团队表示剔除了包含大量个人信息的已知网站处得来的数据。本次训练数据共包含 2 万亿个 token,这样的规模能够在良好性能与实现成本之间取得平衡,既立足真实来源进行采样、又可积累知识并抑制幻觉。团队还对预训练数据开展了各种调查,以便用户能够更好地了解模型的潜力与局限性。

     

    Meta 继续沿用了 Llama 1 中的大部分预训练设置与模型架构,使用标准 Transformer 架构、RMSNorm 应用预泛化、SwiGLU 激活函数和旋转位置嵌入。与 Llama 1 的主要架构差异则体现在,更长的上下文长度与分组查询注意力(GQA)。

     

    团队在 Meta 的研究超级集群和内部生产集群上对模型进行了预训练。这两大集群均采用英伟达 A100 GPU,区别在于互连类型和每个 GPU 的功耗上限的不同。


    如上图所示,Llama 2 模型优于 Llama 1 模型。与 Llama 1-65B 相比,Llama 2-70B 在 MMLU 和 BBH 上的得分分别提高了约 5 分和 8 分。除了代码基准测试之外,LLama 2 7B 和 34B 在所有类型的基准测试中也均优于 Falcon 7B 和 40B。此外,Llama 2-70B 模型的性能超越了所有开源模型。



    除了开源模型之外,Llama 2-70B 在 MMLU 和 GSM8K 上表现接近 GPT-3.5,但在编码基准方面存在显著差距。而在几乎所有基准测试中,Llama 2-70B 的结果均与 PaLM 持平或更好。但目前 Llama 2-70B 的性能与 GPT-4 和 PaLM-2-L 相比,仍存在较大差距。

    微调

     

    为了加以引导,Meta 使用公开可用的指令调优数据对 Llama 2 进行了微调,且方法基本参照 Touvron 等人之前的经验。

     

    第三方 SFT 数据可以从多种不同来源处获取,但其中不少数据在多样性和质量方面有所欠缺——这很容易导致大语言模型与对话式指令间发生错位。因此,Meta 首先集中收集了数千个高质量 SFT 数据示例。团队表示,这种舍弃第三方数据集中的大量低质量示例、转而使用数量更少但质量更高的自有示例的方法,的确显著改善了训练结果。万条级别的 SFT 注释就足以实现高质量结果。因此,在收集了总计 27540 条注释后,他们停止了对 SFT 的进一步调优。Meta 强调,并未使用任何 Meta 用户的数据。团队最终对模型进行了 2 个 epoch 的微调。

     

    此外,Meta 还发现从 SFT 模型输出结果中得到的采样,往往比人类标注员手写的 SFT 数据更具竞争力。因此,团队将注释工作的重心更多转向基于偏好的 RLHF 注释上。

     

    RLHF

     

    Meta 表示收集的数据代表着根据经验采样的人类偏好数据,由人类标注员选择自己更喜欢两条模型输出中的哪一条。人类给出的反馈意见随后将用于训练奖励模型,该模型会不断学习人类标注员的偏好模式,再据此自动执行偏好决策。

     

    Meta 团队要求标注员首先编写提示词,之后根据提供的标准在两条模型响应采样之间做出选择。为了尽可能提高多样性,给定的两条响应采集自两个不同的模型变体,其设置的温度超参数有所区别。除了强制选择其一之外,标注员们也可以哪个都不选、而是给出自己心目中的答案。而且可选评价也具体分为:明显更好、更好、稍好、略好一点点/不确定。

     

    在训练使用的偏好注释集合中,Meta 表示高度关注有用性和安全性。所谓“有用性”,是指 Llama 2-Chat 响应须满足用户请求并交付相应的信息;安全性则是指 Llama 2-Chat 是否会生成不安全响应,例如“请给出制造炸弹的详细说明”虽然符合有用性要求,但却明显有违安全原则。

     

    为此,团队的安全注释中提供了关于对抗性提示词的说明及其他指导意见,此外还在安全阶段收集了安全标签。这部分附加信息将把模型响应划分成三种类别:1)偏好响应安全,但另一响应不安全;2)两种响应均安全;3)两种响应均不安全。Meta 安全数据集所生成的响应在这三种类别上的比例分别是 18%、47%和 35%。Meta 团队没有考虑任何偏好响应不安全、而另一响应安全的情况,团队认为人类更偏好较为安全的响应结果。

     


    与其他开源和闭源模型相比,Llama 2-Chat 的安全人工评估结果

    奖励模型

     

    有研究结果发现,有用性和安全性有时候会相互抵消,因此单一奖励模型很难在这两项指标上均表现良好。为了解决这个问题,Meta 训练了两个相互独立的奖励模型。其一针对有用性进行优化(名为 Helpativity RM),其二针对安全性进行优化(名为 Safety RM)。

     

    简单来讲,奖励模型“知晓”聊天模型所知晓的内容,这样就能防止两个模型间发生信息不匹配、进而频繁产生“幻觉”。模型架构和超参数的设置也与预训练语言模型相同,只是用于下一 token 预测的分类头被替换成了用于输出标量奖励的回归头。

     

    Meta 表示,奖励模型的准确性是 Llama 2-Chat 最终性能的核心指标之一。虽然该如何综合评估生成模型目前还没有明确结论和最佳实践,但对奖励本身的排名已经没有任何歧义。就是说在其他条件相同的情况下,奖励模型的改进完全可以被直接转化为 Llama 2-Chat 的改进。

    安全性

     

    没有对数据集进行任何额外过滤,这将保证 Llama 2 能够被广泛用于各类跨任务场景(例如更好地对仇恨言论进行分类),同时避免偶尔因过度清洗而引发意料之外的人口统计偏差。重要的是,这也让 Llama 2-Chat 在安全微调期间能够以更少的示例高效实现应用泛化。Meta 提醒道,大家要谨慎使用 Llama 2 模型,且务必在认真完成安全微调后再实际部署。



    上表比较了 Llama 2 与 Llama 1、Falcon 和 MPT 的性能差异。与 Llama 107B 模型相比,Llama 2-7B 的真实性和信息性提高了 21.37%,有毒内容比例降低了 7.61%。预训练的 13B 和 70B 两个 Llama 2 版本出现了有毒内容比例上升,这可能是因为预训练数据量越大、或者不同数据集间相互杂糅。

     

    Llama 2 在有毒内容比例这项指标上并未优于其他模型,团队推测这可能是因为没有积极过滤预训练数据。但团队认为,不过滤预训练数据也许能让基础模型在微调阶段学会适应更多下游任务(包括仇恨言论检测),避免意外将某些社群的人口统计信息过滤掉。放宽对预训练数据的过滤,还能帮助模型用更少的示例实现合理的安全微调。

     

    参考链接:

    https://ai.meta.com/resources/models-and-libraries/llama/

    https://blogs.microsoft.com/zh/blog/2023/07/18/microsoft-and-meta-expand-their-ai-partnership-with-llama-2-on-azure-and-windows/

    2023-07-19 14:576886

    评论 1 条评论

    发布
    用户头像
    挺好,国内又可以玩起来了,全面超越
    2023-07-20 08:44 · 浙江
    回复
    没有更多了
    发现更多内容

    一步步实现React-Hooks核心原理

    helloworld1024fd

    JavaScript

    pyside6 qml TableView列表 用QSortFilterProxyModel模糊查询

    Mr_No爱学习

    汽车报告丨分析了比亚迪宋全网口碑,我们得出这个结论

    前嗅大数据

    数据分析 数据采集 爬虫工具 汽车咨询 比亚迪宋

    过等保是什么意思?能简单解释下吗?

    行云管家

    网络安全 等保 等级保护 过等保

    HUAWEI AppGallery Connect全新升级,支持HarmonyOS生态全生命周期服务!

    HarmonyOS开发者

    HarmonyOS

    部署 SAP UI5 应用到 SAP BTP 时遇到的 fiori not found 错误消息

    汪子熙

    JavaScript 前端开发 Fiori SAP UI5 10月月更

    AiTrust下预训练和小样本学习在中文医疗信息处理挑战榜CBLUE表现

    汀丶人工智能

    nlp

    十大 CI/CD 安全风险(五)

    SEAL安全

    DevOps CI/CD 软件供应链安全 日志记录

    链上量化合约保险交易挖矿dapp系统开发

    开发微hkkf5566

    从零到一手写迷你版Vue

    helloworld1024fd

    JavaScript

    PaddleNLP--UIE(二)--小样本快速提升性能(含doccona标注)

    汀丶人工智能

    NLP 大模型

    京东云TiDB SQL优化的最佳实践

    京东科技开发者

    数据库 索引 sql SQL优化 TiDB

    CEF | VS2017+Qt5.14.2+cef 实现基于CEF框架的客户端

    YOLO.

    qt 10月月更 C++

    在一个公司死磕了5-10年的程序员,最后都哪里去了?

    源字节1号

    【LeetCode】 LRU 缓存机制Java题解

    Albert

    算法 LeetCode 10月月更

    美团前端手写面试题总结

    helloworld1024fd

    JavaScript

    【Mybatis】Mybatis generator如何修改Mapper.java文件

    石臻臻的杂货铺

    mybatis 10月月更

    一步步实现React-Hooks核心原理

    helloworld1024fd

    JavaScript

    DTT第7期直播回顾 | 低代码应用构建流程和适用场景,与你想的一样吗?

    华为云开发者联盟

    云计算 低代码 华为云 企业号十月 PK 榜

    虚拟蜜罐:从信息模拟到实现虚拟蜜罐技术

    郑州埃文科技

    Linux IP地址 蜜罐

    《SREWorks 云原生数智运维工程实践》电子书重磅来袭!(免费下载)

    阿里云大数据AI技术

    大数据 运维 云原生 电子书 企业号十月PK榜

    探索智能化测试技术

    华为云开发者联盟

    软件 测试 开发 华为云 企业号十月 PK 榜

    颜值经济下,车企的必备武器

    华为云开发者联盟

    云计算 后端 SaaS 华为云 企业号十月 PK 榜

    深入react源码看setState究竟做了什么?

    flyzz177

    React

    五个堡垒机常见问题解答-行云管家

    行云管家

    网络安全 堡垒机 资产安全 IT资产安全

    【一】ERNIE:飞桨开源开发套件,入门学习,看看行业顶尖持续学习语义理解框架,如何取得世界多个实战的SOTA效果?

    汀丶人工智能

    nlp 知识图谱

    再添神器!Paddle.js 发布 OCR SDK

    百度Geek说

    JavaScript paddle 企业号十月 PK 榜

    cstdio的源码学习分析10-格式化输入输出函数fprintf---宏定义/辅助函数分析06

    桑榆

    源码刨析 10月月更 C++

    KubeEdge SIG AI发布首个分布式协同AI Benchmark调研

    华为云开发者联盟

    人工智能 深度学习 云原生 华为云 企业号十月 PK 榜

    大数据测试之大数据系统及特点

    千锋IT教育

    OpenHarmony Liteos_A内核之iperf3移植心得

    OpenHarmony开发者

    OpenHarmony

    微软赢麻了!联合Meta 重磅发布开源、可直接商用大模型Llama 2,网友:OpenAI 感觉如何?_生成式 AI_褚杏娟_InfoQ精选文章