收录了 ctr模型 频道下的 50 篇内容
本文总结了广告、推荐领域最为流行的 10 个深度学习 CTR 模型的结构特点,构建了它们之间的演化图谱。
如何将离线训练好的模型部署于线上生产环境,进行实时推理,一直是业界难点。
万物皆Embedding!
CTR模型关键的胜负手
原创技术专栏“深度学习 CTR 预估模型实践”的第三篇文章
本文是王喆在 AI 前线 开设的原创技术专栏“深度学习 CTR 预估模型实践”的第二篇文章(以下“深度学习 CTR 预估模型实践”简称“深度 CTR 模型”)。专栏第一篇文章回顾:《深度学习CTR预估模型凭什么成为互联网增长的关键?》。重看王喆老师过往精彩文章:《重读 Youtube 深度学习推荐系统论文,字字珠玑,惊为神文》、《YouTube 深度学习推荐系统的十大工程问题》。
深度学习CTR预估模型实践
《深度学习CTR预估模型实践》专栏开篇
本文旨在以深度CTR预估模型为基础,探索在应用宝推荐场景下的算法优化。
如何在不影响用户产品体验的情况下,更精准地推荐用户可能感兴趣的广告,是每个算法工程师长期思考的问题。
推荐系统几乎已经深入到人们生活的方方面面,其背后的算法也在不断地迭代更新。FM和FFM模型是最近几年提出的模型,拥有在数据量较大并且特征稀疏的情况下,仍然能够得到优秀的性能和效果的特性。
本文提出了一种同时结合了特征交互中的顺序依赖和保持 DNN 的非线性表达能力的 FM based 模型 SeqFM,在建模特征交互和动态行为序列时使用了多视图的自注意力机制。
本文介绍一种动态样式组合优选加 DSA 模型,并结合分位置拍卖技术,较完美地解决了组合样式优选的问题。
详细介绍YouTube推荐系统的模型结构和技术细节。
千亿参数规模的模型已经被业界证明能够有效提高业务效果。如何高效训练出这样的模型?百 GB 级别的模型如何在线上实现毫秒级的响应?这些能力在各个大厂都被视为核心技术竞争力和机器学习能力的技术壁垒。要具备这样的能力,对相关系统有什么样的挑战?本文将从系统的角度去详细分析这些问题,并给出腾讯公司的无量系统对这些问题的解答。
本文来自美团点评技术文章系列。
稀疏 CTR 模型是用于预测点击率的一类深度学习模型的统称。通过处理高维稀疏特征数据实现高效的广告点击率预测,准确的 CTR 预测可以更好地进行广告投放决策,提升广告投放效果。在稀疏 CTR 模型场景下,通常使用大量高维稀疏特征,这类 Embedding 矩阵造成了
超硬核解题思路快来看看吧!本期邀请“创新大师杯”全球AI极客挑战赛——PAI-DeepRec CTR模型性能优化挑战赛获奖队伍分享解题思路,共同推动实际工业实际场景中点击率预估模型的训练效率的提升。