时隔16年Jeff Barr重返10.23-25 QCon上海站,带你看透AI如何重塑软件开发! 了解详情
写点什么

一种基于目标检测实现黑花屏分类任务的方案

  • 2021-05-05
  • 本文字数:4201 字

    阅读完需:约 14 分钟

一种基于目标检测实现黑花屏分类任务的方案

视频帧的黑、花屏的检测是视频质量检测中比较重要的一部分,传统做法是由测试人员通过肉眼来判断视频中是否有黑、花屏的现象,这种方式不仅耗费人力且效率较低。为了进一步节省人力、提高效率,一种自动的检测方法是大家所期待的。目前,通过分类网络模型对视频帧进行分类来自动检测是否有黑、花屏是比较可行且高效的。然而,在项目过程中,视频帧数据的收集比较困难,数据量较少,部分花屏和正常屏之间差异不够明显,导致常用的分类算法难以满足项目对分类准确度的要求。因此本文尝试了一种利用目标检测算法实现分类的方式,帮助改善单纯的分类的算法效果不够理想的问题。

核心技术与架构图

一般分类任务的流程如下图,首先需要收集数据,构成数据集;并为每一类数据定义一个类型标签,例如:0、1、2;再选择一个合适的分类网络进行分类模型的训练,图像分类的网络有很多,常见的有 VggNet, ResNet,DenseNet 等;最后用训练好的模型对新的数据进行预测,输出新数据的类别。



目标检测任务的流程不同于分类任务,其在定义类别标签的时候还需要对目标位置进行标注;目标检测的方法也有很多,例如 Fast R-CNN, SSD,YOLO 等;模型训练的中间过程也比分类模型要复杂,其输出一般为目标的位置、目标置信度以及分类结果。



由于分类算法依赖于一定量的数据,在项目实践中,数据量较少或图像类间差异较小时,传统分类算法效果不一定能满足项目需求。这时,不妨考虑用目标检测的方式来做‘分类’。接下来以 Yolov5 为例来介绍如何将目标检测框架用于实现单纯的分类任务。

技术实现

除了分类之外,目标检测还可以从自然图像中的大量预定义类别中识别出目标实例的位置。大家可能会考虑目标检测模型用于分类是不是过于繁琐或者用目标检测框架来做单纯的分类对代码的修改比较复杂。这里,我们将用一种非常简单的方式直接在数据标注和输出内容上稍作修改就能实现单纯的分类了。接下来将介绍一下具体实现方法:

数据的标注

实现目标检测时,需要对数据中的目标进行标注,这一过程是十分繁琐的。但在用于纯粹的分类上可以将这一繁琐过程简单化,无需手动标注,直接将整张图作为我们的目标,目标中心也就是图像的中心点。只需读取整张图像,获得其长、宽以及中心点的坐标就可以完成标注了。并定义好类别标签,正常屏为 0,花屏为:1,黑屏为 2。具体实现如下:


OBJECT_DICT = {"Normalscreen": 0, "Colorfulscreen": 1, "Blackscreen": 2}def parse_json_file(image_path):    imageName = os.path.basename(image_path).split('.')[0]    img = cv2.imread(image_path)    size = img.shape    label = image_path.split('/')[4].split('\\')[0]    label = OBJECT_DICT.get(label)    imageWidth = size[0]    imageHeight = size[1]    label_dict = {}    xmin, ymin = (0, 0)    xmax, ymax = (imageWidth, imageHeight)    xcenter = (xmin + xmax) / 2    xcenter = xcenter / float(imageWidth)    ycenter = (ymin + ymax) / 2    ycenter = ycenter / float(imageHeight)    width = ((xmax - xmin) / float(imageWidth))    heigt = ((ymax - ymin) / float(imageHeight))    label_dict.update({label: [str(xcenter), str(ycenter), str(width), str(heigt)]})    label_dict = sorted(label_dict.items(), key=lambda x: x[0])    return imageName, label_dict
复制代码

训练过程

该过程与目标检测的训练过程一致,不需要进行大的修改,只需要根据数据集的特性对参数进行调整。


# 加载数据,获取训练集、测试集图片路径with open(opt.data) as f:    data_dict = yaml.load(f, Loader=yaml.FullLoader)      with torch_distributed_zero_first(rank):        check_dataset(data_dict) train_path = data_dict['train']test_path = data_dict['val']Number_class, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names']) 
# 创建模型model = Model(opt.cfg, ch=3, nc=Number_class).to(device)
# 学习率的设置lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp['lrf']) + hyp['lrf'] scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
# 训练for epoch in range(start_epoch, epochs): model.train()
复制代码

损失的计算

损失由三部分组成,边框损失,目标损失,分类损失,具体如下:


def compute_loss(p, targets, model):    device = targets.device    loss_cls, loss_box, loss_obj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)    tcls, tbox, indices, anchors = build_targets(p, targets, model) h = model.hyp    # 定义损失函数    BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([h['cls_pw']])).to(device)    BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([h['obj_pw']])).to(device)    cp, cn = smooth_BCE(eps=0.0)    # 损失    nt = 0      np = len(p)     balance = [4.0, 1.0, 0.4] if np == 3 else [4.0, 1.0, 0.4, 0.1] for i, pi in enumerate(p):         image, anchor, gridy, gridx = indices[i]          tobj = torch.zeros_like(pi[..., 0], device=device)         n = image.shape[0]          if n:            nt += n  # 计算目标            ps = pi[anchor, image, gridy, gridx]            pxy = ps[:, :2].sigmoid() * 2. - 0.5            pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]            predicted_box = torch.cat((pxy, pwh), 1).to(device)                     giou = bbox_iou(predicted_box.T, tbox[i], x1y1x2y2=False, CIoU=True)                        loss_box += (1.0 - giou).mean()             tobj[image, anchor, gridy, gridx] = (1.0 - model.gr) + model.gr *   giou.detach().clamp(0).type(tobj.dtype)             if model.nc > 1:                t = torch.full_like(ps[:, 5:], cn, device=device)                t[range(n), tcls[i]] = cp                loss_cls += BCEcls(ps[:, 5:], t)          loss_obj += BCEobj(pi[..., 4], tobj) * balance[i]      s = 3 / np    loss_box *= h['giou'] * s    loss_obj *= h['obj'] * s * (1.4 if np == 4 else 1.)    loss_cls *= h['cls'] * s    bs = tobj.shape[0]    loss = loss_box + loss_obj + loss_cls    return loss * bs, torch.cat((loss_box, loss_obj, loss_cls, loss)).detach()
复制代码

对输出内容的处理

进行预测时,会得到所有检测到的目标的位置(x,y,w,h),objectness 置信度和分类结果。由于最终目的是对整张图进行分类,可以忽略位置信息,重点考虑置信度和分类结果:将检测到的目标类别作为分类结果,如果同时检测出多个目标,可以将置信度最大的目标的类别作为分类结果。代码如下:


def detect(opt,img):    out, source, weights, view_img, save_txt, imgsz = \        opt.output, img, opt.weights, opt.view_img, opt.save_txt, opt.img_size    device = select_device(opt.device)    half = device.type != 'cpu'    model = experimental.attempt_load(weights, map_location=device)    imgsz = check_img_size(imgsz, s=model.stride.max())    if half:        model.half()    img = letterbox(img)[0]    img = img[:, :, ::-1].transpose(2, 0, 1)    img = np.ascontiguousarray(img)    img_warm = torch.zeros((1, 3, imgsz, imgsz), device=device)    _ = model(img_warm.half() if half else img_warm) if device.type != 'cpu' else None     img = torch.from_numpy(img).to(device)    img = img.half() if half else img.float()    img /= 255.0    if img.ndimension() == 3:        img = img.unsqueeze(0)    pred = model(img, augment=opt.augment)[0]    # 应用非极大值抑制    pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)    # 处理检测的结果    for i, det in enumerate(pred):         if det is not None and len(det):            det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img.shape).round()            all_conf = det[:, 4]            if len(det[:, -1]) > 1:                ind = torch.max(all_conf, 0)[1]                c = torch.take(det[:, -1], ind)detect_class = int(c)            else:                for c in det[:, -1]:                    detect_class = int(c)            return detect_class
复制代码

效果展示

为了将视频帧进行黑、花屏分类,测试人员根据经验将屏幕分为正常屏(200 张)、花屏(200 张)和黑屏(200 张)三类,其中正常屏幕标签为 0,花屏的标签为 1,黑屏的标签为 2。



为了进一步说明该方法的有效性,我们将基于 Yolov5 的‘分类’效果与 ResNet 分类效果做了对比。根据测试人员对 ResNet 分类效果的反馈来看,ResNet 模型容易将正常屏与花屏错误分类,例如,下图被测试人员定义为正常屏:



ResNet 的分类结果为 1,即为花屏,显然,这不是我们想要的结果。



基于 Yolov5 的分类结果为 0,即为正常屏,这是我们所期待的结果。



同时,通过对一批测试数据的分类效果来看,Yolov5 的分类效果比 ResNet 的分类准确度更高,ResNet 的分类准确率为 88%,而基于 Yolov5 的分类准确率高达 97%。

总结

对于较小数据集的黑、花屏的分类问题,采用 Yolov5 来实现分类相较于 ResNet 的分类效果会更好一些。当我们在做图像分类任务时,纯粹的分类算法不能达到想要的效果时,不妨尝试一下用目标检测框架来分类吧!虽然过程稍微复杂一些,但可能会有不错的效果。目前目标检测框架有很多,用它们完成分类任务的处理方式大致和本文所描述的类似,可以根据数据集的特征选择合适目标检测架构来实现分类。本文主要介绍了如何将现有的目标检测框架直接用于单纯的图像分类任务,当然,为了使得结构更简洁,也可以将目标检测中的分类网络提取出来用于分类。


本文转载自:360 技术(ID:qihoo_tech)

原文链接:一种基于目标检测实现黑花屏分类任务的方案

2021-05-05 07:003116

评论

发布
暂无评论
发现更多内容

ClickHouse内幕(2)基础数据结构

京东科技开发者

电力科学研究 涉及的IT系统

执于业务

校园跑腿小程序系统,高效校友互动平台,校园校友系统,校园校友系统构建

DUOKE七七

php uniapp 社交交友 校园系统

ClickHouse内幕(1)数据存储与过滤机制

京东科技开发者

从缺陷到创新:质量保障的新视角

京东科技开发者

douyin商品评论数据接口(douyin.item_review)丨douyin平台实时API接口指南

tbapi

抖音 抖音评论接口 抖音商品评论接口

淘宝商品搜索API返回值详解:关键字搜索的数据应用策略

技术冰糖葫芦

API Explorer API 文档 pinduoduo API

如何找到适合您需求的云桌面厂家

青椒云云电脑

云桌面 云桌面厂家

云桌面行业报告:2024年值得关注的云桌面厂家

青椒云云电脑

桌面云 云桌面

Mac电脑玩win游戏用什么?PD虚拟机和CrossOver玩游戏谁更好?

阿拉灯神丁

软件 Mac 软件 CrossOver Mac下载 虚拟机软件 pd 19

圈子交友系统技术交流,创业分享,项目开发,前后端搭建,小程序/app/H5多端圈子社区论坛系统

DUOKE七七

php 开源 源码 uniapp 社交交友

观测云与传统监控软件比,到底强在哪里?

可观测技术

监控 可观测性

云桌面厂商选择:避免常见错误指南

青椒云云电脑

云桌面 云桌面厂家 云桌面解决方案

云教室解决方案:如何实现远程教学的无缝对接

青椒云云电脑

云教室 云教室解决方案

云电脑成本分析:为什么云电脑可能是更经济的选择

青椒云云电脑

云电脑 云电脑平台

社交软件红包技术解密(十三):微信团队首次揭秘微信红包算法,为何你抢到的是0.01元

JackJiang

网络编程 即时通讯 IM

云桌面成本效益分析:评估不同云桌面厂家的定价策略

青椒云云电脑

云桌面 云桌面厂家 云桌面方案

云桌面硬件需求:云桌面厂家推荐配置清单

青椒云云电脑

云桌面 云桌面解决方案

移动图形工作站购买指南:如何挑选适合您的设备

青椒云云电脑

图形工作站 移动图形工作站

淘宝/天猫获得店铺所有商品,taobao.item_search_shop API返回值技巧分享

技术冰糖葫芦

API Explorer api 货币化 API 文档 pinduoduo API

一种基于目标检测实现黑花屏分类任务的方案_架构_360技术_InfoQ精选文章