写点什么

仅需一小时,教你用豆包 MarsCode 学会图像物体识别

  • 2024-12-11
    北京
  • 本文字数:2358 字

    阅读完需:约 8 分钟

大小:702.15K时长:03:59
仅需一小时,教你用豆包 MarsCode 学会图像物体识别

今天教大家如何通过豆包 MarsCode 低代码实现图像物体智能检测。轻松了解购物同款识别、动植物品种识别、车辆违章识别的底层逻辑,并进行初步应用。快码住这期干货满满的教程,一起用代码炼出火眼金睛。

课前准备

安装豆包 MarsCode


在启动编码工作前,我们需要先下载安装豆包MarsCode 编程助手。


以在 Visual Studio Code 中为例,需要先打开 VSCode 扩展窗口,在搜索框搜索 MarsCode,找到豆包 MarsCode 后单击 「install」,完成安装,登录后即可使用豆包 MarsCode 编程助手。


获取课程代码


复制如下链接至浏览器,即可获取代码:

https://sourl.cn/2WRZVH

git clone https://gitcode.com/langgptai/ImageDetection.git
复制代码

安装 Python 环境


Windows 系统安装 Python


打开如下官方网站,点击适合自己电脑配置的版本即可下载👇

https://www.python.org/downloads/


🌟注意要记住自己安装的 Python 版本,之后会用到~

配置 VSCode


1. 安装 Python 必备扩展:


打开 VSCode,点击左侧扩展图标(或直接按快捷键:Ctrl+Shift+X ),搜索并安装以下扩展:

  • Python(Microsoft 出品,必装)



  • Python Extension Pack(包含多个实用工具)

  • Python Indent(自动缩进)

  • Python Path(路径管理)


2. 配置 Python 环境


  • 按快捷键 Ctrl+Shift+P(macOS 用 Command+Shift+P)

  • 输入"Python: Select Interpreter"


  • 选择之前安装的 Python 版本


3. 创建和运行第一个 Python 程序


  • 点击"文件 > 新建文件"

  • 保存为.py 文件(如:hello.py)

  • 输入示例代码:

printf("hello world!");
复制代码


  • 右键点击编辑器,选择"在终端中运行 Python 文件" 或点击右上角的运行按钮(三角形图标)


安装 Git(可选,用于下载模型)


  • 访问以下网址: https://git-scm.com/downloads

  • 下载并安装 Git

  • 验证安装:git--version

FFmpeg 安装


Windows:


访问如下网址后:

https://www.ffmpeg.org/download.html,下载 Windows 版本(选择 Windows builds),解压下载的文件到指定目录(如 C:\ffmpeg)并添加以下环境变量:


  • 右键"此电脑" → 属性 → 高级系统设置 → 环境变量

  • 在"系统变量"中找到 Path

  • 点击"编辑" → "新建"

  • 添加 FFmpeg 的 bin 目录路径(如 C:\ffmpeg\bin)


验证安装:打开新的命令行窗口,输入 ffmpeg -version


Linux:


sudo apt updatesudo apt install ffmpeg
复制代码


Mac: 

brew install ffmpeg
复制代码


Python 依赖安装


  • 升级 pip:

python -m pip install --upgrade pip
复制代码


  • 安装主要依赖:

# 基础依赖pip install torch torchvisionpip install transformerspip install pillowpip install opencv-pythonpip install ultralyticspip install tqdmpip install ffmpeg-python# 如果下载速度慢,可以使用清华源:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torch torchvisionpip install -i https://pypi.tuna.tsinghua.edu.cn/simple transformers pillow opencv-python ultralytics tqdm ffmpeg-python
复制代码


完成一系列的准备工作之后,终于来到了我们的实操环节!现在正式开始我们的课程跟练,开启 AI 视觉之旅~

课程跟练


首先打开前文提到的课程代码~


git clone https://gitcode.com/langgptai/ImageDetection.git
复制代码


再打开豆包MarsCode,输入提示词获取代码:


你能否用最新的yolo 进行目标检测
复制代码



通过更改代码中的图片路径,跟随图片操作运行代码即可对图像进行物体检测,得到如图效果,成功识别出照片中的人物。

下一步需要对图片中的物体是什么进行标注,我们可以在对话框输入如下关键词:

请把标签也绘制出来
复制代码



替换代码后,可获得如下效果:



观察图像可知有图片中还有其他低概率杂框,比如 Bench 和 Bottle 的识别框。

低概率:指代码识别物体正确概率。

如果需要去除掉低概率杂框,我们只需要在对话框输入如下提示词:


概率在 0.5以下的不绘制,其他代码不变
复制代码


即可得到如下图效果:


想要核对答案的朋友,我们也为大家准备好了完整代码~


import cv2from ultralytics import YOLO
# 加载模型model = YOLO("./models/yolo11s.pt") # 假设我们使用的是 YOLOv8 的 nano 模型
# 读取图片image_path = "media/image.png"image = cv2.imread(image_path)
# 进行目标检测results = model.predict(source=image, save=True, save_txt=True) # 保存检测结果为图片和文本文件
# 打印检测结果for result in results: boxes = result.boxes for box in boxes: if box.conf >= 0.5: # 只绘制概率在 0.5 及以上的检测结果 print(f"类别: {box.cls}, 置信度: {box.conf}, 边界框: {box.xyxy}")
# 提取类别标签和置信度 label = f"{model.names[int(box.cls)]} {float(box.conf):.2f}" # 绘制边界框和类别标签 x1, y1, x2, y2 = box.xyxy[0] x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# 显示图像cv2.imshow("Image with Detection", image)cv2.waitKey(0)cv2.destroyAllWindows()
复制代码


接下来继续进行应用升级,进行车流检测。打开视频接下里输入如下提示词:


检测视频 cars.mp4 并保存检测结果
复制代码



可获取如下效果:



在其他常见的生活应用场景中,抖音的滤镜检测年龄玩法也是运用了类似的原理。现在我们来进行情绪识别的应用,或许也能轻松复刻类似滤镜玩法。


我们对豆包MarsCode 输入如下命令:

HF_ENDPOINT=https://hf-mirror.com python emotion.py
复制代码



即可加载情绪识别模型识别图像中人物情绪。



同样的,在模式选择中选择 3 并打开视频路径,类似的也可获得如下图效果👇



以上就是图像物体智能检测的全部内容,类似的原理还能用在非常多生活领域,欢迎大家运用今天所学知识,多多探索生活中更多可能性!

2024-12-11 10:108954

评论

发布
暂无评论
发现更多内容

49天含泪苦学这些分布式技术文档,一不小心,吊打了字节跳动面试官

三十而立

Java 分布式 java面试

GPT-4 可以开始测试了

HoneyMoose

pulsar 报错源码排查:"Not enough non-faulty bookies available"

李code

源码 pulsar 故障恢复 参数调优 白话源码

机器学习算法(八):基于BP神经网络的乳腺癌的分类预测

汀丶人工智能

数据挖掘 机器学习 BP神经网络

记录丨阿里云校招生的成长经历

阿里巴巴云原生

阿里云 云原生 校招

Spring依赖注入Bean类型的8种情况,你学废了吗?

Java永远的神

spring 源码 程序员 后端 java面试

AI大模型加速升级,数据和隐私何以为安?

博文视点Broadview

软件工程高效学 | 软件工程基础

TiAmo

软件工程

扒站软件:SiteSucker汉化激活

真大的脸盆

Mac Mac 软件 网站下载 下载网站工具

如何使用责任链默认优雅地进行参数校验?

JAVA旭阳

Java spring

30s 就可以掌握的 Nginx 片段

Java你猿哥

Java nginx ssm Java工程师 nginx 开源版

阿里架构组分布式架构技术使用心得:全在这一份文档里面了

三十而立

Java java面试

又发现一个开源商城项目,谷粒商城外又多了个选择

马丁玩编程

《云原生架构容器&微服务优秀案例集》惊喜来袭

阿里巴巴云原生

阿里云 容器 微服务 云原生

Three.js 进阶之旅:全景漫游-初阶移动相机版

dragonir

JavaScript 前端 three.js

聊聊前端性能指标那些事儿

京东科技开发者

性能优化 前端 性能 前端性能 企业号 3 月 PK 榜

CNStack 虚拟化服务:实现虚拟机和容器资源的共池管理

阿里巴巴云原生

阿里云 云原生 虚拟化 CNStack

滴滴 一面总结

Java你猿哥

Java 滴滴 java面试 面经

Dubbo + ZooKeeper丨如何解决线上故障排查链路长的难题

阿里巴巴云原生

阿里云 开源 云原生 dubbo Zookeepe

Z世代新母婴人群消费洞察2023

易观分析

母婴 新消费 Z世代 消费

对前端性能优化的一些小看法

Yestodorrow

【共创共赢】AntDB数据库合作伙伴交流会(北京站)顺利举办

亚信AntDB数据库

数据库 AntDB AntDB数据库 企业号 3 月 PK 榜

全网最新架构实战文档:高并发+分布式+微服务+SpringBoot+Nginx

三十而立

Java 分布式 java面试

openEuler开源新项目,嵌入式实时虚拟机ZVM介绍

openEuler

Linux 操作系统 虚拟机 嵌入式 openEuler

博睿学院 | 本周四,博睿学院数据集成系列公开课正式开讲

博睿数据

数据中台 智能运维 博睿数据 博睿学院

微前端框架single-spa子应用加载解析

京东科技开发者

生命周期 微前端 VUE 3.0 源码 企业号 3 月 PK 榜 single-spa

Spring竟然可以创建“重复”名称的bean?—一次项目中存在多个bean名称重复问题的排查

京东科技开发者

spring bean @Bean 企业号 3 月 PK 榜

cookie时效无限延长方案

京东科技开发者

自动化测试 Cookie 接口自动化 UI自动化 企业号 3 月 PK 榜

Redis高频40问

程序员大彬

Java Redis redis 底层原理

工信部数据库适配验证中心项目验收通过 柏睿数据参与共建

科技热闻

OpenHarmony社区运营报告(2023年2月)

OpenHarmony开发者

OpenHarmony

仅需一小时,教你用豆包 MarsCode 学会图像物体识别_AI&大模型_Trae_InfoQ精选文章