写点什么

为什么 MongoDB 使用 B 树(二)

  • 2019-12-26
  • 本文字数:1632 字

    阅读完需:约 5 分钟

为什么 MongoDB 使用 B 树(二)

非关系型

我们在上面其实已经多次提到了 MongoDB 是非关系型的文档数据库,它完全抛弃了关系型数据库那一套体系之后,在设计和实现上就非常自由,它不再需要遵循 SQL 和关系型数据库的体系,可以更自由对特定场景进行优化,而在 MongoDB 假设的场景中遍历数据并不是常见的需求。



MySQL 中使用 B+ 树是因为 B+ 树只有叶节点会存储数据,将树中的每一个叶节点通过指针连接起来就能实现顺序遍历,而遍历数据在关系型数据库中非常常见,所以这么选择是完全没有问题的7


MongoDB 和 MySQL 在多个不同数据结构之间选择的最终目的就是减少查询需要的随机 IO 次数,MySQL 认为遍历数据的查询是常见的,所以它选择 B+ 树作为底层数据结构,而舍弃了通过非叶节点存储数据这一特性,但是 MongoDB 面对的问题就不太一样了:



虽然遍历数据的查询是相对常见的,但是 MongoDB 认为查询单个数据记录远比遍历数据更加常见,由于 B 树的非叶结点也可以存储数据,所以查询一条数据所需要的平均随机 IO 次数会比 B+ 树少,使用 B 树的 MongoDB 在类似场景中的查询速度就会比 MySQL 快。这里并不是说 MongoDB 并不能对数据进行遍历,我们在 MongoDB 中也可以使用范围来查询一批满足对应条件的记录,只是需要的时间会比 MySQL 长一些。


SQL


SELECT * FROM comments WHERE created_at > '2019-01-01'
复制代码


很多人看到遍历数据的查询想到的可能都是如上所示的范围查询,然而在关系型数据库中更常见的其实是如下所示的 SQL —— 查询外键或者某字段等于某一个值的全部记录:


SQL


SELECT * FROM comments WHERE post_id = 1
复制代码


上述查询其实并不是范围查询,它没有使用 >< 等表达式,但是它却会在 comments 表中查询一系列的记录,如果 comments 表上有索引 post_id,那么这个查询可能就会在索引中遍历相应索引,找到满足条件的 comment,这种查询也会受益于 MySQL B+ 树相互连接的叶节点,因为它能减少磁盘的随机 IO 次数。


MongoDB 作为非关系型的数据库,它从集合的设计上就使用了完全不同的方法,如果我们仍然使用传统的关系型数据库的表设计思路来思考 MongoDB 中集合的设计,写出类似如上所示的查询会带来相对比较差的性能:


JavaScript


db.comments.find( { post_id: 1 } )
复制代码


因为 B 树的所有节点都能存储数据,各个连续的节点之间没有很好的办法通过指针相连,所以上述查询在 B 树中性能会比 B+ 树差很多,但是这并不是一个 MongoDB 中推荐的设计方法,更合适的做法其实是使用嵌入文档,将 post 和属于它的所有 comments 都存储到一起:


JSON


{    "_id": "...",    "title": "为什么 MongoDB 使用 B 树",    "author": "draven",    "comments": [        {            "_id": "...",            "content": "你这写的不行"        },        {            "_id": "...",            "content": "一楼说的对"        }    ]}
复制代码


使用上述方式对数据进行存储时就不会遇到 db.comments.find( { post_id: 1 } ) 这样的查询了,我们只需要将 post 取出来就会获得相关的全部评论,这种区别于传统关系型数据库的设计方式是需要所有使用 MongoDB 的开发者重新思考的,这也是很多人使用 MongoDB 后却发现性能不如 MySQL 的最大原因 —— 使用的姿势不对。


有些读者到这里可能会有疑问了,既然 MongoDB 认为查询单个数据记录远比遍历数据的查询更加常见,那为什么不使用哈希作为底层的数据结构呢?



如果我们使用哈希,那么对于所有单条记录查询的复杂度都会是 O(1),但是遍历数据的复杂度就是 O(n);如果使用 B+ 树,那么单条记录查询的复杂度是 O(log n),遍历数据的复杂度就是 O(log n) + X,这两种不同的数据结构一种提供了最好的单记录查询性能,一种提供了最好的遍历数据的性能,但是这都不能满足 MongoDB 面对的场景 —— 单记录查询非常常见,但是对于遍历数据也需要有相对较好的性能支持,哈希这种性能表现较为极端的数据结构往往只能在简单、极端的场景下使用。


本文转载自 Draveness 技术博客。


原文链接:https://draveness.me/whys-the-design-mongodb-b-tree


2019-12-26 17:282229

评论

发布
暂无评论
发现更多内容

一步步带你设计MySQL索引数据结构

程序知音

Java MySQL 数据库 后端技术

【愚公系列】2022年11月 微信小程序-app.json配置属性之entryPagePath

愚公搬代码

11月月更

SPL比SQL更难了还是更容易了?

石臻臻的杂货铺

sql SPL 11月月更

Spring Boot「25」外部配置元数据

Samson

Java spring 学习笔记 spring-boot 11月月更

HTML5学习

Studying_swz

html 前端 11月月更

Vue自定义指令(一)初识

Augus

vuejs 11月月更

袋鼠云陈吉平:深耕国产自研数字化技术与服务,持续为客户创造价值

袋鼠云数栈

第四次工业革命的“知识力”,流淌在百度这条创新流水线上

脑极体

数据库的体系结构

阿泽🧸

数据库 11月月更

重磅|九科信息企业级超级自动化平台通过“信息系统安全等级保护三级认证”

九科Ninetech

阿里云丁宇:云原生激活应用构建新范式,Serverless奇点已来

阿里巴巴云原生

阿里云 Serverless 容器 RocketMQ 云原生

应对大规模的资产扫描一些小Tips

穿过生命散发芬芳

11月月更 资产扫描

python如何处理程序异常

芥末拌个饭吧

Python 11月月更

涛思数据杨攀:如何寻求产品、商业与技术的平衡

GGV

产品 技术 开发者 商业 SaaS

知识经济时代,企业应该如何进行知识管理?

Baklib

知识管理

六大招式,修炼极狐GitLab CI/CD “快” 字诀

极狐GitLab

DevOps CI/CD 持续交付 runner 极狐GitLab

设计千万级学生管理系统的考试试卷存储方案

Geek_1264yp

DevOps|乱谈开源社区、开源项目与企业内部开源

laofo

DevOps 研发效能 工程效率

一步步带你设计MySQL索引数据结构

程序知音

Java MySQL 数据库 编程 后端技术

数据驱动科研,清华大学中国新型城镇化研究院使用 ModelWhale 云端协同创新平台

ModelWhale

人工智能 新基建 云平台 数据科学 学科交叉

一年经验年初被裁面试1月有余无果,还遭前阿里面试官狂问八股,人麻了

程序员小毕

Java spring 程序员 面试 程序人生

vue_Promise学习

Studying_swz

前端 11月月更

CSS学习

Studying_swz

CSS 前端 11月月更

前端食堂技术周刊第 58 期:TypeScript 4.9 RC、10 月登陆浏览器的新功能、Turbopack 真的比 Vite 快 10 倍吗?100 天 Modern CSS 挑战

童欧巴

typescript chrome

联通DataOps和MLOps:将机器学习推理作为新的数据源

Baihai IDP

人工智能 大数据 AI DataOps MLOps

2022-11-07:给你一个 n 个节点的 有向图 ,节点编号为 0 到 n - 1 ,其中每个节点 至多 有一条出边。 图用一个大小为 n 下标从 0 开始的数组 edges 表示, 节点 i 到

福大大架构师每日一题

算法 rust 福大大

深入理解Metrics(一):Gauges

冰心的小屋

Java metrics Guages

CSS学习笔记(一)

lxmoe

CSS 前端 学习笔记 11月月更

Java For Data Science

Mahipal_Nehra

java; data-science java client Java core Java static

IDC MarketScape :百度安全位居NESaaS市场领导者位置

百度安全

安全 云安全

Verilog语法之测试文件

芯动大师

Verilog 11月月更 测试文件

为什么 MongoDB 使用 B 树(二)_语言 & 开发_Draveness_InfoQ精选文章