9 月 13 日,2025 Inclusion・外滩大会「开源嘉年华」正在限量报名中! 了解详情
写点什么

“深度赋智”论文被人工智能顶刊 IEEE TPAMI 接收

  • 2021-04-22
  • 本文字数:2072 字

    阅读完需:约 7 分钟

“深度赋智”论文被人工智能顶刊IEEE TPAMI接收

“深度赋智”首推以知识驱动的全自动机器学习架构,应用于 2020 四月结束的国际自动机器学习领域的顶级赛事 NeurIPS-AutoDL 竞赛,并以压倒性优势获得世界冠军,相关论文于近日被人工智能顶刊 IEEE TPAMI 接收。“深度赋智”已将该成果应用于天机自动机器学习平台,致力于让每家企业都具有开箱即用的 AI 能力。


近日,“深度赋智”与厦门大学纪荣嵘教授联合团队的研究成果“Evolving Fully Automated Machine Learning via Life-Long Knowledge Anchors”(基于知识锚点进化的全自动机器学习)被 IEEE TPAMI 录用。TPAMI 全称 Transactions on Pattern Analysis and Machine Intelligence,是人工智能,机器视觉,模式识别等多个领域的顶尖国际期刊,对原创性有很高要求,侧重于发表能引领广泛兴趣的突破性前沿研究,并以严苛的审稿过程著称,收录论文数量十分有限(当前影响因子 17.861,在中国计算机学会认定的人工智能领域四个 A 类期刊中排名第一)。

困局


深度学习让机器可以从大量的数据中学习经验并加以应用,已经在图像分类,序列标注等多个任务上取得了惊人的成果。但是,这一过程需要大量的人工干预,比如特征提取,模型选择,参数调节等,既费时又费力。


所以专家们自然而然想到了引入自动化让机器自己“学习如何学习”。然而机器学习的自动化离不开几个关键难题:我们该教授什么知识和配备什么工具?在哪一部分实现自动化?自动化训练如何保证稳定的效果?如何在最短时间内找到又简单又高效的方案?


论文指出,当前的自动机器学习多是在整个流程中的某个或某几个独立分段实现自动化,这种“半自动”让搜索自然受限于“次优”并导致最终结果的偏差。而且搜索空间往往“精心设计”,与自动学习的初衷相违背,实际落地时也易出现过拟合的情况。自动机器学习需要对整个网络结构更高层、更进一步的理解。

破局——论文提出的基于终身知识锚点的进化算法


作者创新性地提出了一种新型的全自动机器学习框架,首次打破了现有自动机器学习中各搜索空间的独立设计,并使用数据集知识锚点加进化算法来加速搜索,解决了在超大空间搜索最优方案的设计难题。



图 1 全自动机器学习框架


承袭现有的终身学习与元学习思想,该框架中的知识锚点使用了全新的元特征和概率抽样方法,极大减少了人工,缓解了搜索过程中的过拟合。该框架实现了全流程自动化,极大降低了机器学习应用门槛,用户只需根据提示进行“傻瓜式”操作,自助服务,时间成本低,即使不懂算法和代码,也不是问题。

从实验结果可以发现,该框架在图像/音频/视频/文本/表格五种模态的典型数据集上的效果都远超当前 SOTA 方案,以下图的图像任务实验为例:


表 1 提出的框架(左)和 AutoCV2 第一(右)的对比


消融实验也证明了知识锚点方法的有效性:


图 2 “各搜索方法+ 知识锚点”与原搜索方法的效果对比

使用该框架,“深度赋智”于 2020 年 4 月获得国际自动机器学习领域的顶级赛事 NeurIPS-AutoDL 系列竞赛总决赛世界冠军,在图像/音频/视频/文本/表格不同场景的十个数据集上稳定获得八项第一和均分第一,证明了该框架在不同场景的普适性。


图 3 竞赛得分情况


价值——降低 AI 应用门槛,助力企业走上智能化快车道


根据目前消息,“深度赋智”已将该成果应用于其自研的天机自动机器学习平台,支持图像/音频/视频/文本/表格模态的任务和多个复杂 AI 场景,并计划向自动学习中引入更多数据集知识,提升搜索效率。


图 4 搜索空间设计示意


天机自动机器学习平台是“深度赋智”产业智能化的前沿创新技术应用之一,已为零售/鞋服、工业、交易平台、金融等行业的多个头部客户提供了相应服务。


在天机自动机器学习平台的帮助下,无需花费高额的成本打造工程师团队,有效避免 AI 应用成本高、周期长、效果难以保障等问题,降低时间成本和机会成本,助力企业走上智能化快车道,提升综合竞争力。


在使用体验上,用户无需深入掌握数据知识,就能建立高质量的人工智能模型;无需深入学习编程知识,就能建立整套生产级人工智能应用,即使算法小白也能玩转 AI,实现事半功倍的效果。平台从数据、模型、部署等多个方面进行了打磨,内含近百模块组件,涉及内容理解,计算机视觉,音频分析和数据预测等多领域国内顶尖方案,通过自动机器学习技术进行组件的衔接与调优,将复杂方案定制的成本降低到 1%,克服了传统 AI 产品的落地周期长、效果迭代久、投入产出比低的瓶颈,为用户实现了超过 60%的人力成本节约和显著的净利率提升。


图 5 全自动 AI 中台=AI 中台+Full-AutoML


2021 年 1 月,工信部印发《工业互联网创新发展行动计划(2021-2023 年)》指出,要进一步完善新型基础设施、彰显融合应用成效、提升技术创新能力、健全产业发展生态和增强安全保障能力。智能化制造和个性化定制等新模式新业态的广泛普及是融合应用成效的关键,智能化成为“新三年”的核心工作目标。


人工智能行业即将迎来政策红利大年,充满新的产业图景、新的机遇和挑战 。在未来一段时间,“深度赋智”将会充分发挥自己丰富的算法资源、深度的技术合作支持、不断完善的生态资源等优势,不断完善 MetaAI 技术,持续建设全自动机器学习平台,与更多开发者、服务商一起面向终端客户推出更多的 AI 解决方案。

2021-04-22 15:452428

评论

发布
暂无评论
发现更多内容

JVM基本概念

爱好编程进阶

Java 面试 后端开发

Kubernetes 常用命令大全

爱好编程进阶

Java 面试 后端开发

Java基础08 方法

爱好编程进阶

Java 面试 后端开发

Java程序员2021年金三银四面试必备:高速突击学习框架+性能优化

爱好编程进阶

Java 面试 后端开发

格灵深瞳与华为签署合作协议,共同推进昇腾AI产业创新发展

Geek_32c4d0

昇腾AI

keepalived实现双机热备

爱好编程进阶

Java 面试 后端开发

Zookeeper+ActiveMQ集群搭建

爱好编程进阶

Java 面试 后端开发

gRPC学习之三:初试GO版gRPC开发

爱好编程进阶

Java 面试 后端开发

JAVA学习(3)

爱好编程进阶

Java 面试 后端开发

Java工程师的进阶之路-Kafka篇(二)

爱好编程进阶

Java 面试 后端开发

MySQL:从B树到B+树到索引再到存储引擎

爱好编程进阶

Java 面试 后端开发

SpringCloudRPC远程调用核心原理:feign

爱好编程进阶

Java 面试 后端开发

区块链交易所源码开发搭建,多种交易所系统开发

Geek_56201b

区块链 交易所开发 区块链交易所搭建

linux之read命令

入门小站

RabbitMQ 最常用的三大模式

爱好编程进阶

Java 面试 后端开发

spring-cloud-kubernetes官方demo运行实战

程序员欣宸

#Kubernetes# spring-cloud java 4月月更

Java性能优化的35个细节(珍藏版)

爱好编程进阶

Java 面试 后端开发

SpringCloudRPC远程调用核心原理:FeignRPC动态代理实例创建流程

爱好编程进阶

Java 面试 后端开发

咨询公司也要挑客户吗?

秋去冬来春未远

数字化 信息化 客户 咨询

MQTT介绍及与其他协议的比较

爱好编程进阶

Java 面试 后端开发

Mybatis延迟加载和查询缓存

爱好编程进阶

Java 面试 后端开发

CNCF生态蓝图的八个领域及路线图概述

穿过生命散发芬芳

4月月更

Java面试过了京东五面之后,发现掌握了这些技术也没有那么难

爱好编程进阶

Java 面试 后端开发

Mycat 多租户方案

爱好编程进阶

Java 面试 后端开发

spring boot 配置liquibase

爱好编程进阶

Java 面试 后端开发

SpringBoot文件上传临时目录找不到的问题

爱好编程进阶

Java 面试 后端开发

Eclipse快捷键 10个最有用的快捷键

爱好编程进阶

Java 面试 后端开发

Spring学习--面向抽象编程(模拟Spring的简单实现)

爱好编程进阶

Java 面试 后端开发

GitOps的12个痛点

俞凡

DevOps 研发效能 gitops

东方园林召开2022年度全员大会

科技大数据

读《Software Engineering at Google》(07)

术子米德

架构师成长笔记

“深度赋智”论文被人工智能顶刊IEEE TPAMI接收_AI&大模型_深度赋智_InfoQ精选文章