阿里、蚂蚁、晟腾、中科加禾精彩分享 AI 基础设施洞见,现购票可享受 9 折优惠 |AICon 了解详情
写点什么

深度学习入门(三):多维数组的运算

  • 2020-03-29
  • 本文字数:4023 字

    阅读完需:约 13 分钟

深度学习入门(三):多维数组的运算

编者按:本文节选自图灵程序设计丛书 《深度学习入门》一书中的部分章节。


如果掌握了 NumPy 多维数组的运算,就可以高效地实现神经网络。因此,本节将介绍 NumPy 多维数组的运算,然后再进行神经网络的实现。

多维数组

简单地讲,多维数组就是“数字的集合”,数字排成一列的集合、排成长方形的集合、排成三维状或者(更加一般化的) 维状的集合都称为多维数组。下面我们就用 NumPy 来生成多维数组,先从前面介绍过的一维数组开始。


>>> <b>import numpy as np</b>>>> <b>A = np.array([1, 2, 3, 4])</b>>>> <b>print(A)</b>[1 2 3 4]>>> <b>np.ndim(A)</b>1>>> <b>A.shape</b>## 4,>>> <b>A.shape[0]</b>4
复制代码


如上所示,数组的维数可以通过 np.dim() 函数获得。此外,数组的形状可以通过实例变量 shape 获得。在上面的例子中,A 是一维数组,由 4 个元素构成。注意,这里的 A.shape 的结果是个元组(tuple)。这是因为一维数组的情况下也要返回和多维数组的情况下一致的结果。例如,二维数组时返回的是元组 (4,3),三维数组时返回的是元组 (4,3,2),因此一维数组时也同样以元组的形式返回结果。下面我们来生成一个二维数组。



>>> <b>B = np.array([[1,2], [3,4], [5,6]])</b>>>> <b>print(B)</b>[[1 2] [3 4] [5 6]]>>> <b>np.ndim(B)</b>2>>> <b>B.shape</b>## 3, 2
复制代码


这里生成了一个 3 × 2 的数组 B。3 × 2 的数组表示第一个维度有 3 个元素,第二个维度有 2 个元素。另外,第一个维度对应第 0 维,第二个维度对应第 1 维(Python 的索引从 0 开始)。二维数组也称为 矩阵 (matrix)。如图 1 所示,数组的横向排列称为 (row),纵向排列称为 (column)。



图 1 横向排列称为行,纵向排列称为列

矩阵乘法

下面,我们来介绍矩阵(二维数组)的乘积。比如 2 × 2 的矩阵,其乘积可以像图 2 这样进行计算(按图中顺序进行计算是规定好了的)。



图 2 矩阵的乘积的计算方法


如本例所示,矩阵的乘积是通过左边矩阵的行(横向)和右边矩阵的列(纵向)以对应元素的方式相乘后再求和而得到的。并且,运算的结果保存为新的多维数组的元素。比如, 的第 1 行和 的第 1 列的乘积结果是新数组的第 1 行第 1 列的元素, 的第 2 行和 的第 1 列的结果是新数组的第 2 行第 1 列的元素。另外,在本书的数学标记中,矩阵将用黑斜体表示(比如,矩阵 ),以区别于单个元素的标量(比如,)。这个运算在 Python 中可以用如下代码实现。



>>> <b>A = np.array([[1,2], [3,4]])</b>>>> <b>A.shape</b>## 2, 2>>> <b>B = np.array([[5,6], [7,8]])</b>>>> <b>B.shape</b>## 2, 2>>> <b>np.dot(A, B)</b>array([[19, 22], [43, 50]])
复制代码


这里, 都是 2 × 2 的矩阵,它们的乘积可以通过 NumPy 的 np.dot() 函数计算(乘积也称为点积)。np.dot() 接收两个 NumPy 数组作为参数,并返回数组的乘积。这里要注意的是,np.dot(A, B)np.dot(B, A) 的值可能不一样。和一般的运算(+* 等)不同,矩阵的乘积运算中,操作数(AB)的顺序不同,结果也会不同。


这里介绍的是计算 2 × 2 形状的矩阵的乘积的例子,其他形状的矩阵的乘积也可以用相同的方法来计算。比如,2 × 3 的矩阵和 3 × 2 的矩阵的乘积可按如下形式用 Python 来实现。



>>> <b>A = np.array([[1,2,3], [4,5,6]])</b>>>> <b>A.shape</b>## 2, 3>>> <b>B = np.array([[1,2], [3,4], [5,6]])</b>>>> <b>B.shape</b>## 3, 2>>> <b>np.dot(A, B)</b>array([[22, 28], [49, 64]])
复制代码


2 × 3 的矩阵 和 3 × 2 的矩阵 的乘积可按以上方式实现。这里需要注意的是矩阵的形状(shape)。具体地讲,矩阵 的第 1 维的元素个数(列数)必须和矩阵 的第 0 维的元素个数(行数)相等。在上面的例子中,矩阵 的形状是 2 × 3,矩阵 的形状是 3 × 2,矩阵 的第 1 维的元素个数(3)和矩阵 的第 0 维的元素个数(3)相等。如果这两个值不相等,则无法计算矩阵的乘积。比如,如果用 Python 计算 2 × 3 的矩阵 和 2 × 2 的矩阵 的乘积,则会输出如下错误。



>>> <b>C = np.array([[1,2], [3,4]])</b>>>> <b>C.shape</b>## 2, 2>>> <b>A.shape</b>## 2, 3>>> <b>np.dot(A, C)</b>Traceback (most recent call last): File "<stdin>", line 1, in <module>ValueError: shapes (2,3) and (2,2) not aligned: 3 (dim 1) != 2 (dim 0)
复制代码


这个错误的意思是,矩阵 的第 1 维和矩阵 的第 0 维的元素个数不一致(维度的索引从 0 开始)。也就是说,在多维数组的乘积运算中,必须使两个矩阵中的对应维度的元素个数一致,这一点很重要。我们通过图 3 再来确认一下。



图 3 在矩阵的乘积运算中,对应维度的元素个数要保持一致


图 3 中,3 × 2 的矩阵 和 2 × 4 的矩阵 的乘积运算生成了 3 × 4 的矩阵 。如图所示,矩阵 和矩阵 的对应维度的元素个数必须保持一致。此外,还有一点很重要,就是运算结果的矩阵 的形状是由矩阵 的行数和矩阵 的列数构成的。


另外,当 是二维矩阵、 是一维数组时,如图 4 所示,对应维度的元素个数要保持一致的原则依然成立。


可按如下方式用 Python 实现图 4 的例子。



>>> <b>A = np.array([[1,2], [3, 4], [5,6]])</b>>>> <b>A.shape</b>## 3, 2>>> <b>B = np.array([7,8])</b>>>> <b>B.shape</b>## 2,>>> np.dot(A, B)array([23, 53, 83])
复制代码



图 4  是二维矩阵、 是一维数组时,也要保持对应维度的元素个数一致

神经网络的内积

下面我们使用 NumPy 矩阵来实现神经网络。这里我们以图 5 中的简单神经网络为对象。这个神经网络省略了偏置和激活函数,只有权重。



图 5 通过矩阵的乘积进行神经网络的运算


实现该神经网络时,要注意 的形状,特别是 的对应维度的元素个数是否一致,这一点很重要。



>>> <b>X = np.array([1, 2])</b>>>> <b>X.shape</b>## 2,>>> <b>W = np.array([[1, 3, 5], [2, 4, 6]])</b>>>> <b>print(W)</b>[[1 3 5] [2 4 6]]>>> <b>W.shape</b>## 2, 3>>> <b>Y = np.dot(X, W)</b>>>> <b>print(Y)</b>[ 5 11 17]
复制代码


如上所示,使用 np.dot(多维数组的点积),可以一次性计算出 的结果。这意味着,即便 的元素个数为 1001000,也可以通过一次运算就计算出结果!如果不使用 np.dot,就必须单独计算 的每一个元素(或者说必须使用 for 语句),非常麻烦。因此,通过矩阵的乘积一次性完成计算的技巧,在实现的层面上可以说是非常重要的。


图书简介https://www.ituring.com.cn/book/1921



相关阅读


深度学习入门(一):神经网络


深度学习入门(二):激活函数


公众号推荐:

2024 年 1 月,InfoQ 研究中心重磅发布《大语言模型综合能力测评报告 2024》,揭示了 10 个大模型在语义理解、文学创作、知识问答等领域的卓越表现。ChatGPT-4、文心一言等领先模型在编程、逻辑推理等方面展现出惊人的进步,预示着大模型将在 2024 年迎来更广泛的应用和创新。关注公众号「AI 前线」,回复「大模型报告」免费获取电子版研究报告。

AI 前线公众号
2020-03-29 19:251479

评论

发布
暂无评论
发现更多内容

前端技术培训学习的就业怎么样?

小谷哥

【Nacos配置管理】一文带你搞懂Nacos配置管理模块

石臻臻的杂货铺

nacos

机房搬迁更改集群IP

TiDB 社区干货传送门

Apipost产品介绍

徐天

软件测试/测试开发 | app自动化测试(Android)—Capability 使用进阶

测试人

软件测试 自动化测试 测试开发 appium app自动化测试

Grafana组件升级和离线镜像源

TiDB 社区干货传送门

监控 版本升级

通过Jmeter对TiDB数据库进行压测

TiDB 社区干货传送门

监控 性能调优 实践案例 故障排查/诊断 安装 & 部署

看板:自我管理的高效工具!

敏捷开发

项目管理 软件开发 看板

基于ModelArts进行流感患者密接排查

华为云开发者联盟

人工智能 华为云 行人检测 企业号 2 月 PK 榜 华为云开发者联盟

Cloud + TiDB 技术解读

TiDB 社区干货传送门

TiDB Operator--K8S集群基础环境配置

TiDB 社区干货传送门

实践案例 集群管理 管理与运维 安装 & 部署 扩/缩容

墨天轮《2022年中国数据库行业年度分析报告》正式发布,精彩抢先看

墨天轮

数据库 Serverless 云原生 国产数据库 HTAP

ChatGPT3.5 !微软最新官宣整合OpenAI的14个产品细节,改变从视频会议Teams开始

B Impact

软件测试/测试开发 | app自动化测试(Android)—参数化用例

测试人

软件测试 自动化测试 测试开发 appium app自动化测试

通过Jmeter批量向TiDB数据库插入数据

TiDB 社区干货传送门

性能调优 实践案例 管理与运维 安装 & 部署 数据库连接

Apipost预执行脚本使用教程

徐天

开源!MatrixBench:实时物联网场景的数据压测“兵法秘籍”

YMatrix 超融合数据库

开源 物联网 超融合数据库 YMatrix MatrixBench

PingCAP 黄东旭万字长文剖析数据库发展新趋势:脱离应用开发者的数据库,不会成功

TiDB 社区干货传送门

数据库前沿趋势

【计算讲谈社】第十六讲|当我们在谈目标时,究竟在谈什么?

大咖说

【ha知识两问】ha软件是什么?ha软件用途有哪些?

行云管家

高可用 ha 日志审计 双机热备

2023年知名堡垒机厂商及价格简单说明

行云管家

网络安全 信息安全 数据安全 堡垒机

品牌不得不投放户外LED广告的原因

Dylan

LED显示屏 户外LED显示屏 led显示屏厂家

前端培训机构毕业后该注意什么?

小谷哥

DR Auto-Sync 搭建和灾难恢复手册

TiDB 社区干货传送门

管理与运维 数据库架构设计

TiDB 的数据加载性能调优方案

TiDB 社区干货传送门

性能调优 应用适配

云小课|GaussDB如何进行性能调优

华为云开发者联盟

数据库 后端 华为云 企业号 2 月 PK 榜 华为云开发者联盟

为啥要对jvm做优化

华为云开发者联盟

开发 华为云 企业号 2 月 PK 榜 华为云开发者联盟

DR Auto-Sync 的 ACID 恢复功能简介和长期断网应急处理方案

TiDB 社区干货传送门

管理与运维 数据库架构设计

webhook告警配置

TiDB 社区干货传送门

构建工具tsup入门第一部分

小鑫同学

前端 编译 工具链

小白科普丨何为树、二叉树和森林

华为云开发者联盟

开发 华为云 企业号 2 月 PK 榜 华为云开发者联盟

深度学习入门(三):多维数组的运算_AI&大模型_斋藤康毅_InfoQ精选文章