写点什么

这 5 个 Python 特性,后悔没早知道

  • 2020-01-09
  • 本文字数:2370 字

    阅读完需:约 8 分钟

这5个Python特性,后悔没早知道


作为近 10 年才崛起的编程语言,Python 已被证明是一种非常强大的语言。从交互式映射区块链,我用 Python 构建过很多应用程序。


对初学者而言,Python 中有很多特性很难一开始就掌握。


即使你是从其他语言转换过来的程序员,用 Python 进行更高级别的抽象编码绝对是另一种体验。有些 Python 特性,我希望自己能早点知道。本文将介绍其 5 个最重要的特性。

1.列表推导式:代码更紧凑

很多人认为,lambda、map filter 是初学者应该最先掌握的 Python“技巧”。虽然我也认为应关注这些功能,但由于它们缺乏灵活性。


实际上,它们在大多数情况下并不是非常有用!


Lambda是一种在 1 行中编写一个一次性使用的函数的方法。一旦函数被多次调用,性能将受到影响。


另一方面,map 可以将一个函数应用于列表中的所有元素,而 filter 能获取集合中满足用户自定义条件的元素子集。


add_func = lambda z: z ** 2is_odd = lambda z: z%2 == 1multiply = lambda x,y: x*y
aList = list(range(10))print(aList)# [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
复制代码


列表推导式是一个简洁而灵活的方法,它使用灵活的表达式和条件通过其他列表来创建新列表。


它用方括号来构造,带有一个表达式或函数,只有当列表中的元素满足某个条件时,该表达式或函数才作用于列表中的每个元素。


并且,它还能用嵌套来处理嵌套列表,并且这会比使用 map 和 filter 更灵活。


# Syntax of list comprehension[ expression(x) for x in aList if optional_condition(x) ]
复制代码


print(list(map(add_func, aList)))print([x ** 2 for x in aList])# [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]# [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
print(list(filter(is_odd, aList)))print([x for x in aList if x%2 == 1])# [1, 3, 5, 7, 9]# [1, 3, 5, 7, 9]
复制代码


下载地址:python-list-comprehension.py

2、列表操作:实现列表的双向操作

Python 允许使用反向索引,其中aList[-1] == aList[len(aList)-1] 。所以,我们可以通过调用aList[-2] 来获取列表的倒数第二个元素。


我们还能使用 aList[start:end:step]语法来对列表进行切片,其中起始元素包含在内,终止元素不包含在内(即 [start,end) 步长为 step 的前闭后开区间)。


因此,调用 aList[2:5] 会得到 [2, 3, 4]。我们也能通过调用 aList[::-1] 来反转列表,这种技术非常优雅。


此外,也可以将列表拆分成单独的元素,或者使用星号将列表拆分成单个元素和子列表的混合形式。


a, b, c, d = aList[0:4]print(f'a = {a}, b = {b}, c = {c}, d = {d}')# a = 0, b = 1, c = 2, d = 3
a, *b, c, d = aListprint(f'a = {a}, b = {b}, c = {c}, d = {d}')# a = 0, b = [1, 2, 3, 4, 5, 6, 7], c = 8, d = 9
复制代码


下载地址:python-unpacking.py

3、 压缩和枚举:for 循环更方便

Zip 函数会创建一个迭代器,且该迭代器可以对来自多个列表的元素进行聚合。用它可以在 for 循环中对列表进行并行遍历和排序。


用星号对其进行解压。


numList = [0, 1, 2]engList = ['zero', 'one', 'two']espList = ['cero', 'uno', 'dos']print(list(zip(numList, engList, espList)))# [(0, 'zero', 'cero'), (1, 'one', 'uno'), (2, 'two', 'dos')]
for num, eng, esp in zip(numList, engList, espList): print(f'{num} is {eng} in English and {esp} in Spanish.')# 0 is zero in English and cero in Spanish.# 1 is one in English and uno in Spanish.# 2 is two in English and dos in Spanish.
复制代码


下载地址:python-zip-1.py


Eng = list(zip(engList, espList, numList))Eng.sort() # sort by engLista, b, c = zip(*Eng)
print(a)print(b)print(c)# ('one', 'two', 'zero')# ('uno', 'dos', 'cero')# (1, 2, 0)
复制代码


下载地址:python-zip-2.py


开始时, Enumerate 看起来有点吓人,但在很多情况下使用它确实能方便很多。


它是一个自动计数器,通常会在 for 循环中使用它,这样就不需要再用 counter = 0counter += 1 来创建和初始化计数器了。枚举和压缩是两个构造 for 循环的最强工具。


upperCase = ['A', 'B', 'C', 'D', 'E', 'F']lowerCase = ['a', 'b', 'c', 'd', 'e', 'f']for i, (upper, lower) in enumerate(zip(upperCase, lowerCase), 1):    print(f'{i}: {upper} and {lower}.')# 1: A and a.# 2: B and b.# 3: C and c.# 4: D and d.# 5: E and e.# 6: F and f.
复制代码


下载地址:python-enumerate.py

4、生成器:内存更高效

当我们想要对一个大的结果集进行计算,但又不想为所有结果数据同时分配内存时,我们就可以使用生成器(Generator)了。


换句话说,它会动态地生成值,并且不会将先前的值存储在内存中,因此我们只能对它们进行一次迭代操作。


当读取大文件或使用关键字 yield 生成无穷数列时,通常会用它。我发现在我的大多数数据科学项目中,它都能发挥很大作用。


def gen(n):    # an infinite sequence generator that generates integers >= n    while True:        yield n        n += 1        G = gen(3)     # starts at 3print(next(G)) # 3print(next(G)) # 4print(next(G)) # 5print(next(G)) # 6
复制代码


下载地址:python-generator.py

5、虚拟环境:实现隔离

如果在本文介绍的 5 个特性中只选一个,那么就是虚拟环境的使用。


Python 应用程序通常会用各种不同的包,这些包可能是由具有复杂依赖关系的不同开发人员开发的。每个应用程序都会用特定的库设置,使用其他库的版本无法实现对某个应用程序安装包的复制。


所以,不存在满足所有应用要求的单个安装包。


conda create -n venv pip python=3.7  # select python versionsource activate venv...source deactivate
复制代码


为每个应用程序创建独立的、自洽的虚拟环境 venv 非常重要,这可以通过使用 pipconda来实现。


原文链接:


https://towardsdatascience.com/5-python-features-i-wish-i-had-known-earlier-bc16e4a13bf4


2020-01-09 12:023124
用户头像

发布了 571 篇内容, 共 412.7 次阅读, 收获喜欢 731 次。

关注

评论

发布
暂无评论
发现更多内容

观测云入驻青云云市场,提升云上系统统一可观测能力

观测云

Centos系统安装MySQL数据库

杨杰灵

MySQL 数据库

兆骑科创高层次人才创业赛事活动,创新创业人才引进平台

兆骑科创凤阁

深入Linux内核IO技术栈

C++后台开发

Linux内核 内核开发 驱动开发 嵌入式开发 内核操作系统

AIRIOT答疑第7期|如何快速提升物联网项目交付速度?

AIRIOT

物联网

【计算讲谈社】第七讲|AI 的价值探索:如何拓展商业边界?

大咖说

人工智能 AI 商业边界

苦熬三个月整理的spring全家桶PDF版限时分享,整整400页

Java工程师

Java spring Spring全家桶

语音聊天app开发——开发人员如何进行代码分析

开源直播系统源码

软件开发 直播源码 语音app开发

【七夕限定盲盒抽奖】一文带你搞懂盲盒抽奖的页面配置

hum建应用专家

阿里云 Serverless 函数计算

Github又火了!阿里重发系统设计核心原理全彩笔记,上线两天破百万阅读

Java工程师

Java 高并发

【云原生】Spring Cloud是什么?Spring Cloud版本介绍

java李杨勇

Java spring cloud stream 签约计划第三季

编译器工程师眼中的好代码(1):Loop Interchange

openEuler

开源 编译器 openEuler

Jmix - 业务系统高效开发的少代码平台

世开 Coding

Java spring 快速开发平台 Jmix 少代码

playwright录制脚本

和牛

测试 Python. 8月月更

专访容智信息柴亚团:最低调的公司如何炼成最易用的RPA?

王吉伟频道

RPA 机器人流程自动化 0代码 容智信息 柴亚团

MySQL 概念

武师叔

8月月更

MASA Stack 第三期社区例会

MASA技术团队

Framework blazor

Eclipse Debug FFmpeg

贾献华

8月月更

企业为什么要数字化转型?数字化转型成功的案例有哪些?

优秀

数字化转型

认识一下MRS里的“中间人”Alluxio

华为云开发者联盟

大数据 MRS

阿里P8整理的《百亿级并发系统设计》实战教程,实在是太香了

冉然学Java

数据库 编程 架构 分布式 并发系统设计

北京零基础前端软件培训

小谷哥

47K Star 的SpringBoot+MyBatis+docker电商项目,附超详细的文档

冉然学Java

数据库 项目 java; 编程、 源码学习

编译器工程师眼中的好代码:Loop Interchange

华为云开发者联盟

c c++ 开发 编译器

Python图像处理丨如何调用OpenCV绘制直方图

华为云开发者联盟

Python 人工智能

培训机构与自学的优缺点都有什么

小谷哥

学习大数据开发技术后好找工作吗?

小谷哥

最具有中国特色的微服务组件!阿里新一代SpringCloud学习指南

JAVA活菩萨

Java 程序员面试 大厂技能 秋招 大厂面经

兆骑科创高层次人才引进平台,赛事活动举办,线上路演

兆骑科创凤阁

兵荒马乱,毕业季的故事

坚果

毕业 8月月更

这5个Python特性,后悔没早知道_文化 & 方法_Eden Au_InfoQ精选文章