8B 端侧写作智能体 AgentCPM-Report 开源,DeepResearch 终于本地化

  • 2026-01-23
    北京
  • 本文字数:1202 字

    阅读完需:约 4 分钟

1 月 20 日,由清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 8B 端侧写作智能体 AgentCPM-Report 正式开源。

 

在当前深度研究场景中,企业与科研人员常面临两难抉择:依赖云端大模型虽能获得顶级调研能力,却需承担核心数据泄密风险;选择断网或本地小模型保障安全,又往往因性能局限导致报告逻辑浅薄、实用性不足。

 

为此,AgentCPM-Report 以端侧模型为核心,来实现本地化部署与 SOTA 性能的双重突破,力求无需昂贵算力集群,也无需上传任何信息,即可在本地构建专家级调研助手。

 

据悉,该智能体的核心亮点集中在两大维度。

 

第一,极致效能与“以小博大”的突破:通过平均 40 轮深度检索与近 100 轮思维链推演,AgentCPM-Report 以仅 8B 的参数规模,实现了对复杂信息的全方位挖掘与重组,能够产出逻辑严密、洞察深刻的万字长文,在深度调研任务上性能对标顶级闭源系统。

 

第二,物理隔绝的本地安全保障:专为高隐私场景设计,支持完全离线的敏捷部署,彻底杜绝云端泄密风险;依托开源的 UltraRAG 框架,可高效挂载并理解本地私有知识库,让核心机密数据在"不出域"的前提下,转化为高价值的专业决策报告。

 

在 DeepResearch Bench、Deep Consult、DeepResearch Gym 三大主流深度调研评测基准中,其综合评分达到甚至超越顶级闭源系统:在最考验核心能力的洞察性指标上排名第一,全面性指标位居第一梯队,仅次于基于 Claude 的复杂写作框架。其中在 DeepResearch Gym 评测中,AgentCPM-Report 以 98.48 的综合得分领跑,在深度、广度、洞察力等关键维度均斩获满分。

官方展示的实战场景中,该智能体可基于《三体》原文知识库,完成从线索挖掘、大纲规划到万字长文撰写的全流程,精准生成"面壁计划"深度调查报告。

 

部署便捷性方面,AgentCPM-Report 支持 Docker 一键启动,无需编写代码即可通过拖拽方式将 PDF、TXT 等本地文档导入后台,系统自动完成切片与向量化索引,用户输入研究课题后,即可生成结构化、带引用的专业报告,实现沉浸式深度调研体验。

 

技术层面,两大创新支撑其“以弱胜强”的表现:一是“写作即推理”模式,通过“起草-深化”两阶段循环与渐进式优化,将长篇写作拆解为微小目标,避免小模型逻辑崩塌;二是“多阶段智能体学习”,拆解智能检索、流畅写作、科学规划、精准决策四大核心能力,通过有监督微调、原子能力强化、全流程优化三阶段训练,实现端到端全链路能力提升。

 

目前,AgentCPM-Report 已在 GitHub、HuggingFace、ModelScope、GitCode、魔乐社区等多个平台开源,UltraRAG 框架也同步开放获取。

 

UltralRAG 框架开源地址:https://github.com/OpenBMB/UltraRAG

GitHub:https://github.com/OpenBMB/AgentCPM

HuggingFace:https://huggingface.co/openbmb/AgentCPM-Report

ModelScope:https://modelscope.cn/models/OpenBMB/AgentCPM-Report

GitCode:https://gitcode.com/OpenBMB/AgentCPM

魔乐社区:https://modelers.cn/models/OpenBMB/AgentCPM-Report