写点什么

单元化架构,为什么要用以及我们如何做到

  • 2014-04-08
  • 本文字数:3059 字

    阅读完需:约 10 分钟

微博粉丝服务平台在单元化架构方面的实践已经在 QCon 讲过,这次重又写起文章,我想传播知识已经不那么重要(单元化架构不是创新,稍后会详细介绍),更重要的是还是希望能够借此引起诸位的思考,能够在架构层面多投入精力思考和尝试。

为什么要有架构实践?

很多人喜欢的是细节,因为有句名言叫魔鬼在细节里,于是都去细节里寻找魔鬼。但是打败了魔鬼就能看到天使么?未必。细节其实是最容易掌握的部分,细节之外还有很多。就像有了水泥和沙子,你能够做出混凝土,但是离建成高楼大厦还有很长的路要走一样,你要学着去设计架构。

但是事情并没有完,就像没有唯一的真理一样,架构也并不是只有一种。你不可能一朝学会,从此天下无敌。如果要赈灾,你需要的是帐篷,如果要重建,你需要的是瓦房。不同的住所需要的是不同的架构。

不同的服务也需要不同的架构设计,这也就是我们需要架构实践的重要原因。在这之后的原因,是我们做任何服务,都要考虑服务的性能和成本。

但优化有很多方式,为什么是架构呢?诚然,从硬件到操作系统,从共享库到应用软件,从算法到架构,每一层都可以优化,但每一层所做的工作量和收益也都是不同的。架构可能是需要投入最多精力的,但在很多时候却也是很少的可以提供超过数量级的提升方式。

所以,思维方式的转变才是你最应该在意的部分,单元化只是一个例子,而粉丝服务平台只是这个例子的例子,而已。

言归正传,接下来本文将从三个问题来介绍这次实践,单元化是什么,为什么要用以及我们如何做到的。

1. 单元化是什么

单元化架构是从并行计算领域发展而来。在分布式服务设计领域,一个单元(Cell)就是满足某个分区所有业务操作的自包含的安装。而一个分区(Shard),则是整体数据集的一个子集,如果你用尾号来划分用户,那同样尾号的那部分用户就可以认为是一个分区。单元化就是将一个服务设计改造让其符合单元特征的过程。

图 1 :洋葱细胞的显微镜截图,单元化要达到的目的就是让每个单元像细胞一样独立工作

在传统的服务化架构下(如下图),服务是分层的,每一层使用不同的分区算法,每一层都有不同数量的节点,上层节点随机选择下层节点。当然这个随机是比较而言的。

图 2 :传统的服务化架构,为伸缩性设计,上层节点随机选择下层节点

与其不同的是,在单元化架构下,服务虽然分层划分,但每个单元自成一体。按照层次来讲的话,所有层使用相同的分区算法,每一层都有相同数量的节点,上层节点也会访问指定的下层节点。因为他们已经在一起。

图 3 :单元化架构,为性能和隔离性而设计,上层节点访问指定下层节点

2. 为什么要用单元化

在性能追求和成本限制的情况下,我们需要找到一种合适的方法来满足服务需求。在传统的分布式服务设计,我们考虑的更多是每个服务的可伸缩性,当各个服务独立设计时你就要在每一层进行伸缩性的考虑。这是服务化设计(SOA)流行的原因,我们需要每个服务能够单独水平扩展。

但是在摩尔定律下,随着硬件的不断升级,计算机硬件能力已经越来越强,CPU 越来越快,内存越来越大,网络越来越宽。这让我们看到了在单台机器上垂直扩展的机会。尤其是当你遇到一个性能要求和容量增长可以预期的业务,单元化给我们提供另外的机会,让我们可以有效降低资源的使用,提供更高性能的服务。

总体而言,更高性能更低成本是我们的主要目标,而经过单元化改造,我们得以用更少(约二分之一)的机器,获得了比原来更高(接近百倍)的性能。性能的提升很大部分原因在于服务的本地化,而服务的集成部署又进一步降低了资源的使用。

当然除了性能收益,如果你做到了,你会发现还有很多收益,比如更好的隔离性,包括请求隔离和资源隔离,比如更友好的升级,产品可以灰度发布等。单元化改造后对高峰的应对以及扩容方式等问题,各位可以参考#微博春节技术保障系列#中的单元化架构文章,也不在此一一赘述。

3. 我们如何做到

此次单元化改造基于微博现有的业务,因此这里也先行介绍一下。粉丝服务平台是微博的内容推送系统(代号 Castalia),可为 V 用户提供向其粉丝推送高质量内容的高速通道(单元化之后已到达百万条每秒)。整个服务涉及用户筛选、发送计费、屏蔽检查、限流控制和消息群发等多个子服务。由于改造思想相通,这里以用户筛选和消息群发两个服务为例,下面两图分别为商业群发在服务化思想和单元化思想下不同的架构。

图 4: 服务化思想下的商业群发架构设计(旧版)

图 5 :商业群发在单元化思想下的架构设计(新版)

对于筛选服务,在服务化架构里,需要去粉丝服务获取粉丝关系,然后去特征服务进行用户特征筛选,最后将筛选结果传输到群发服务器上;而在单元化架构里,粉丝关系直接就在本地文件中,用户特征服务也在本地,最后的筛选结果再不需要传输。服务本地化(粉丝关系和用户特征存储)减去了网络开销,降低了服务延时,还同时提高了访问速度和稳定性,而筛选结果本地存储又进一步节省了带宽并降低了延迟。以百万粉丝为例,每次网络操作的减少节省带宽 8M 左右,延时也从 400ms 降为 0。

群发服务同样如此。由于在服务化架构里,我们使用 MySQL 和 Memcache 的方案,由于关系数据库的写入性能问题,中间还有队列以及相应的队列处理机,所有四个模块都有单独的机器提供服务,而在单元化架构里,四合一之后,只需要一套机器。当然机器的配置可能会有所提升,但真正计算之后你就会发现其实影响微乎其微。原因除了前面介绍的硬件增长空间外,上架机器的基本配置变高也是一个原因。而且,在单元化方案里,当我们把缓存部署在本地之后,其性能还有了额外的 20% 提升。

一些业务特有问题

不过群发这个场景,我们也遇到了一些特定的问题,一是分区问题,一是作业管理。这里也与各位分享下我们的解决方法。

  1. 分区问题

分区问题其实是每个服务都会遇到的,但单元化后的挑战在于让所有服务都适配同一分区算法,在我们的场景下,我们按照接收者进行了分区,即从底层往上,每一层都来适配此分区算法。

这里有特例的是用户特征和屏蔽服务,由于总体容量都很小,我们就没有对数据进行分区,所有单元内都是同一套全量数据,都是一个外部全量库的从库。不过由于本单元内的上层服务的关系,只有属于本分区的用户数据被访问到。所以,适配同一分区算法在某种程度上讲,可以兼容即可。
2. 作业管理

按照前面的分区方式,将群发服务的整体架构变成了一个类似 Scatter-Gather+CQRS 的方案,因为 Gather 不是一个请求处理的必须要素。也就是说,一个群发请求会被扩散到所有单元中,每个单元都要针对自己分区内的用户处理这个群发请求。

广播方式的引入,使得我们首先需要在前端机进行分单元作业的处理监控,我们在此增加了持久化队列来解决。同时,由于单元内每个服务也都是单独维护的,作业可能在任何时间中断,因此每个作业在单元内的状态也都是有记录的,以此来达到作业的可重入和幂等性,也就可以保证每个作业都可以在任何时间重做,但不会重复执行。

除此之外,我们还对服务器进行了更为精细的控制,使用 CPU 绑定提高多服务集成部署时的整体效率,使用多硬盘设计保证每个服务的 IO 性能,通过主从单元的读写分离来提高整体服务等等。

后记

我平时不善文章,现在要成文发表,还是有一点紧张的。不过想到或许可以抛砖引玉,有机会向各位大牛学习,或者跟各位同学一起交流,内心又有些许期待。关于微博或者其他任何网站的设计,欢迎大家一起探讨,随时在微博恭候。

感谢马国耀对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ )或者腾讯微博( @InfoQ )关注我们,并与我们的编辑和其他读者朋友交流。

2014-04-08 21:1415401

评论 2 条评论

发布
用户头像
讲了个寂寞~
2022-03-08 13:16
回复
用户头像
更高性能更低成本是我们的主要目标,而经过单元化改造,我们得以用更少(约二分之一)的机器,获得了比原来更高(接近百倍)的性能。性能的提升很大部分原因在于服务的本地化,而服务的集成部署又进一步降低了资源的使用。
--------
百倍性能提升这块有点疑惑,后续有压测或者生产的数据支撑吗?
2021-02-22 14:54
回复
没有更多了
发现更多内容

第十周学习总结

饭桶

什么是物联网?常见IoT 物联网协议最全讲解

华章IT

物联网 IoT

使用 Jira Service Management 管理资产,您需要知道的5件事

Atlassian

数字化转型 Atlassian Jira ITSM ITIL

使用resilio实现多集群的k8s pod数据双向非实时同步

东风微鸣

Kubernetes 探索与实践 openshift

一点就透的二分查找算法

比伯

Java 编程 程序员 面试 计算机

接口测试如何在json中引用mock变量

测试人生路

json 接口测试 Mock

CAP理论

DL

薇娅携手中国航天基金会与我们的太空 带你“益起探月,共舞九天“

不懂源码?来看看阿里P8亲自手码的Spring源码解析整套笔记,高薪offer唾手可得!

比伯

Java 编程 架构 面试 计算机

架构师第一期作业(第 11 周)

Cheer

作业

揭秘11.11监控排障利器 京东高稳定日志服务深度解析

京东科技开发者

云计算 DevOps 日志监控

身为程序员还记得C语言经典算法(附带答案)吗?

ShenDu_Linux

c c++ 算法 编程语言

Mysql数据备份与恢复

张攀钦

MySQL

《我想进大厂》之Spring夺命连环10问

艾小仙

Java spring 程序员 面试 大厂

“摸爬滚打”多年,从月薪3K到30Kjava大神,我是怎么蜕变的?

比伯

Java 编程 架构 面试 计算机

什么是低代码(Low-Code)?

阿里巴巴云原生

程序员 云原生 代码

Linux 笔记(三): 软件安装

Leo

Linux 学习 大前端

Canal 组件简介与 vivo 帐号实践

vivo互联网技术

数据库 分布式 数据存储

深度剖析,为何C语言在开发领域的地位如此稳固

Philips

Python .net rust C语言 Go 语言

一线大厂欺负程序员?京东单方面辞退38岁P7员工三次败诉

Java架构师迁哥

排查指南 | mPaaS 小程序提示“网络不给力”时该如何排查?

蚂蚁集团移动开发平台 mPaaS

小程序 网络 小程序生态 mPaaS

架构师训练营第 1 期第 10 周总结

owl

极客大学架构师训练营

C++语言中std::array的神奇用法总结,你需要知道!

华为云开发者联盟

容器 数组 函数

Spring Boot 2.4.0正式发布,全新的配置文件加载机制(不向下兼容)

YourBatman

云原生 Spring Boot 新特性

产业新基建,撬动数字经济发展新机遇

京东科技开发者

人工智能 新基建 京东

第十周课后练习

饭桶

源码 | 浅谈Webpack原理,以及loader和plugin实现。

梁龙先森

大前端 webpack

架构师训练营第十周作业

文智

极客大学架构师训练营

Mac下Docker Desktop配置阿里云镜像加速器

jiangling500

Docker 阿里云镜像加速器

Kubernetes初体验--用Kubernetes部署一个Web服务

网管

Kubernetes k8s Web 服务 Go 语言

「面试必备」最新整理出的腾讯C++后台开发面试笔记

linux大本营

c++ Linux 后台开发 架构师

单元化架构,为什么要用以及我们如何做到_架构_梁宇鹏_InfoQ精选文章