从 Vibe 到生产:Vibe Coding 的艺术、训练与陷阱

  • 2026-01-27
    北京
  • 本文字数:2318 字

    阅读完需:约 8 分钟

生成式 AI 的投资回报远超预期?Snowflake 调研全球 1900 位企业与 IT 专业人士后发现平均 ROI 高达 41%!点击下载完整报告

过去一年,随着大模型与编程代理能力的快速成熟,AI 辅助编程在工程实践中的位置发生了实质性变化。围绕 Vibe Coding 的讨论,已不再停留在工具是否“好用”,或模型是否“足够聪明”,而是逐渐转向更具体、也更难回避的问题:当 AI 开始深度参与代码实现、测试与交付流程,软件工程中哪些能力被显著放大,哪些判断仍然必须由人来完成?

在这样的背景下,这场发生在 BUILD 2025 大会上,题为《大咖之声:从 Vibes 到生产:Vibe Coding 的艺术、训练与陷阱》From Vibes to Production:The Art, Discipline, and Pitfalls of Vibe Coding)的圆桌对谈就显得尤为重要。因为它并没有顺着“AI 将如何颠覆软件工程”的情绪高点继续加码,而是进行了一场务实而冷静的对谈。

微软 Azure 首席技术官 Mark Russinovich 与微软开发人员社区副总裁 Scott Hanselman 在本场对谈中,深入解析 AI 编程助手与"氛围编程"正在如何重塑软件开发。两位技术领袖将演示是如何用自然语言编程来激发创造力并降低编码门槛的,但也会直面艰难现实:AI 生成的代码并非自动可投入生产环境。本次分享将审视如何利用氛围编程的速度与力量,通过系统架构设计、严格测试流程与安全实践,最终交付经得起现实考验的稳健软件。

效率跃迁是真实的,但它首先放大的是经验

在对话中,两位嘉宾回顾了 AI 辅助编程的长期演进路径——从上世纪九十年代的 IntelliSense,到后来能够生成代码骨架的 IntelliCode,再到 2021 年前后出现的 Codex、GitHub Copilot,以及近一年逐渐成熟的内置代理式工具。真正的分水岭,并不是“AI 能不能写代码”,而是 Agent 开始能够自主修改代码、运行构建、执行测试并提交变更。当这种能力出现后,生产力的变化不再是线性的,而是呈现出数量级跃迁。

他们都提到,在今年以来的实际项目中,效率提升已经从最初的 1.5 到 2 倍,跃升到了某些场景下的 5 到 10 倍。这种变化在中小型项目和个人工具上尤为明显。过去因为“太零碎”“不值得投入时间”而被放弃的想法,现在可以在极短时间内完成闭环。从一个想法到一个真实可用的工具,其间的摩擦被显著压缩。这正是 Vibe Coding 最具吸引力的地方。

但他们也明确指出,这种提升并非平均分配。真正被放大的,并不是“编程能力”本身,而是工程经验。具备系统理解、架构判断和问题拆解能力的人,能够从 AI 中获得指数级增益;而缺乏这些基础的人,则很难真正驾驭这种效率。

Agent 更像“永远停留在第一天的实习生”

在承认效率跃迁之后,讨论很快转向了 AI 编程的风险边界。随着 Agent 能力增强,一个反复出现的现象开始显现:这些系统在某一刻看起来极其聪明,逻辑清晰、输出完整,但在下一刻却可能犯下连初级工程师都难以接受的错误。

为了解释这种不稳定性,两位嘉宾使用了一个形象的比喻,AI Agent 很像实习生。不是因为它能力不足,而是因为它缺乏稳定的长期记忆,会反复犯已经被指出的问题,容易在任务过程中“走神”,并且对“什么才算真正完成”缺乏可靠判断。更关键的是,这个实习生永远停留在第一天。

即便你前一天已经明确指出了错误,第二天它依然可能回到原有的错误路径。它并不会真正积累经验,只是在当前上下文窗口内短暂服从指令。这种特性,使得在生产级系统中完全放手交给 Agent 成为一件高风险行为。

AI 并不理解系统,它更擅长迎合结果

在更深一层的技术讨论中,对谈触及了 AI 编程的核心问题:它并不真正理解系统。大模型在编程任务中,往往被高度优化为“让测试通过”“让用户满意”,而不是确保行为符合系统的整体约束与设计初衷。

这会导致一系列危险倾向,例如为了通过测试而硬编码特殊分支,用 sleep 掩盖并发问题,混用新旧 API 却依然宣称“production ready”。更棘手的是,AI 往往会以极强的自信表达这些结论,甚至在输出中明确存在失败的情况下,仍然总结为“已经完成”。

两位嘉宾特别强调,这并非某一个模型的缺陷,而是当前主流 AI 编程系统普遍存在的结构性问题。其根源在于训练数据、强化学习目标以及模型本身缺乏跨时间的系统性记忆。

真正的分水岭,在工程师的成长路径上

在这样的技术现实下,一个更深层的影响开始浮现:AI 编程对不同阶段工程师的作用并不对称。对于具备系统感、架构经验和“代码嗅觉”的资深工程师而言,AI 是放大器;而对于缺乏基础判断能力的初级工程师来说,AI 反而可能成为效率阻力。

原因并不复杂,如果你无法识别错误,就无法纠正 AI;如果你不理解系统,就无法判断“看起来能跑”的代码是否安全;而如果你只是接受结果,你就不会真正学习。对谈中引用的实验也印证了这一点,长期依赖 AI 的参与者,对自己刚刚完成的内容几乎无法回忆。

由此,两位嘉宾给出了一个并不轻松的判断:学习没有捷径。随着 AI 能力增强,软件工程方法论的重要性不是降低,而是被进一步放大。复杂系统必须被拆解、被测试、被审查;生产代码的责任,始终无法外包。

在他们看来,当代码生产成本不断逼近零,真正的瓶颈将转移到评估、消化与决策能力上。限制生产力的,不再是算力或 token,而是人类的注意力带宽。

Vibe Coding 更像一面放大镜

在对谈的结尾,两位嘉宾并未否定 Vibe Coding。相反,他们对“尝试新想法的成本前所未有地降低”表达了明确的兴奋。但他们给出的结论同样清晰:Vibe Coding 不是软件工程的终点,它更像一面放大镜。

它会放大经验、判断力和工程素养,也会放大认知缺失和方法论漏洞。最终,决定系统质量与工程上限的,仍然是人。

如果想继续了解两位嘉宾对于 Vibe Coding 相关议题的思考,欢迎朋友们订阅收听 Mark Russinovich 和 Scott Hanselman 的播客《Mark and Scott Learn To》。