2天时间,聊今年最热的 Agent、上下文工程、AI 产品创新等话题。2025 年最后一场~ 了解详情
写点什么

Uber 开源其大规模指标平台 M3

  • 2018-08-25
  • 本文字数:1515 字

    阅读完需:约 5 分钟

Uber 的工程团队发布了其开源指标平台 M3,该平台已经在 Uber 内部使用多年。构建这个平台是为了取代基于 Graphite 的系统,M3 提供了集群管理、聚合、收集、存储管理、分布式时序数据库(TSDB)以及带有其查询语言 M3QL 的查询引擎。

Uber 之前的指标和监控系统是基于 Graphite 的,由一个共享的 Carbon 集群作为支撑,Nagios 负责告警,Grafana 负责提供仪表盘功能。这种方式的问题在于弹性和集群能力比较差、扩展 Carbon 集群的运维成本比较高以及缺少副本的功能,使得每个节点都面临单点故障的风险。新的 M3 指标系统就是为了应对这些问题而产生的。除了扩展性、全局性、跨数据中心的响应式查询之外,新系统的目标还包括标记指标、维持以 StatsD 和 Graphite 格式发送指标的服务的兼容性。 Rob Skillington 是 Uber 的软件工程师,在最近的文章中描述了M3 的架构。M3 目前存储了66 亿条时序数据,每秒收集5 亿个指标并且每秒存储2000 万个指标。

初始版本的M3 包含了一些开源的组件,包括用于聚合的 statsite 、用于存储的 Cassandra 以及用于索引的 Elasticsearch 。但是这些组件逐渐被内部实现替代了,这主要是因为不断增加的运维成本以及对新特性的需求。在 Uber,因为很多团队在广泛使用 Prometheus,M3 在构建的时候,集成 Prometheus 作为远程的存储后端。

Prometheus 的集成是通过一个 sidecar 组件实现的,该组件会向本地区域(regional)的 M3DB 实例写入数据,并将查询扩展至“区域间协调器(inter-regional coordinator),它会从本地区域的 M3DB (存储引擎)实例协调读取”。这种模型的运行方式类似于 Thanos ,Thanos 是 Prometheus 的一个扩展,提供了跨集群联合、无限制存储以及跨集群全局查询的功能。但是,Uber 团队基于各种原因并没有选择Thanos ,主要原因在于非本地存储的指标所带来的高延迟。Thanos 从AWS S3 中拉取并缓存指标数据,因此会带来相关的延迟和用于缓存的额外空间使用,鉴于Uber 在延迟方面的需求以及庞大的数据量,这种方式是不可行的。

M3 的查询引擎提供了所有指标数据的全局视图,无需跨区域的副本。指标写入到本地区域的 M3DB 实例中,副本对区域来讲是本地化的。查询既可以访问本地区域实例,也可以访问存储指标的远程区域中的协调器。结果是在本地聚合的,未来的工作计划是所有的查询都会在远程协调器中进行。

M3 允许用户指定每个指标存储的保存期限和粒度,就像 Carbon 一样。M3 的存储引擎会将每个指标在区域内生成三个副本。为了减少磁盘的使用,会采用自定义的压缩算法对数据进行压缩。大多数的时序数据库都具有压缩整理(compaction)的特性,较小的数据块会重写到较大的数据块中,并重新组织结构以便于提升查询性能。M3DB 尽可能地避免这种压缩整理,从而最大限度地利用主机资源进行更多的并发写入操作并实现稳定的写入和读取延迟。

Skillington 在文章中说到,“M3DB 只有在绝对必要的时候,才会将基于时间的数据压缩整理到一起,比如回填(backfilling)数据,或者将时间窗口索引文件联合在一起具有一定意义的时候”。指标使用一个流模型进行缩小采样(downsample),当指标进入的时候,缩小采样的流程就会执行。

因为PromQL 缺少了一些特性,所以 Uber 内部使用了M3 自己的查询语言 M3QL。在能够处理的指标基数方面会有一些限制,这主要指的是查询而并非存储。M3 通过采用 Bloom 过滤器内存映射文件的索引,优化了对时间数据的访问。Bloom 过滤器用来确定集合中是否存在某些内容,在M3 中,它用来确定要查询的序列是否需要从硬盘中检索。团队目前正在致力于添加在 Kubernetes 上运行 M3 的功能

M3 是使用 Go 语言编写的,可以通过 Github 获取。

查看英文原文: Uber Open Sources Its Large Scale Metrics Platform M3

2018-08-25 16:554331

评论

发布
暂无评论
发现更多内容

第6期|GPTSecurity周报

云起无垠

网站如何做好谷歌优化

九凌网络

外贸网站seo优化教程!

九凌网络

谷歌SEO是什么,它对外贸企业有什么好处?

九凌网络

如何利用谷歌SEO服务帮助企业获客

九凌网络

我院学子在第三届“火焰杯”软件测试开发选拔赛中 取得佳绩

霍格沃兹测试开发学社

Codigger:提高软件安全性的静态分析工具

知者如C

做好谷歌Seo的技巧

九凌网络

双十一激光投影选购全解,总有适合你的心头好物

极客天地

打造次世代分析型数据库(七):向量化计算层缓存

腾讯云大数据

数据库

重磅|博睿数据 Bonree ONE 2023秋季版焕新发布!

博睿数据

可观测性

Linux 爱好者线下沙龙:LLUG 2023·相聚成都 | 第四站

OpenAnolis小助手

Linux 开源 演讲 龙蜥社区 LLUG

演讲回顾 | 龙智专家分享“支撑、共享与安全:芯片开发中的数字资产管理”

龙智—DevSecOps解决方案

芯片 芯片设计 芯片行业

多维评测指标解读第17届MSU世界编码器大赛全高清10bit赛道结果

阿里云CloudImagine

云计算 视频云

PS Raw增效工具Camera Raw 16 for Mac中文版

彩云

ps插件 Camera Raw 16

计算机科学系举办“火焰杯”软件测试开发选拔赛颁奖仪式

霍格沃兹测试开发学社

人工智能学院学生在“火焰杯”软件测试开发选拔赛总决赛获奖

霍格沃兹测试开发学社

CVPR2023优秀论文 | AIGC伪造图像鉴别算法泛化性缺失问题分析

百度Geek说

算法 AIGC 企业号10月PK榜

Java基于API接口爬取商品数据

Noah

10个基于.Net开发的Windows开源软件项目

树上有只程序猿

.net windows 开源软件

浅谈基于敏捷开发交付应对突发项目

鲸品堂

敏捷 敏捷交付 交付 企业号10月PK榜

KubeEdge v1.15.0 发布!新增 Windows 边缘节点支持,基于物模型的设备管理,DMI数据面支持等功能

华为云原生团队

云计算 容器 云原生 边缘计算

Unity中国、Cocos为OpenHarmony游戏生态插上腾飞的翅膀

OpenHarmony开发者

OpenHarmony

NFT聚合平台开发:综合指南NFT开发 DAPP开发

区块链软件开发推广运营

交易所开发 dapp开发 区块链开发 链游开发 NFT开发

当年很流行,现在已经淘汰的前端技术有哪些?

互联网工科生

前端 vite Bun Astro

1024程序员节献礼,火山引擎ByteHouse带来三重产品福利

字节跳动数据平台

数据库 大数据 云原生 数仓 clickhosue

Uber开源其大规模指标平台M3_DevOps & 平台工程_Hrishikesh Barua_InfoQ精选文章