写点什么

谷歌推出 ML KIT,将机器学习带到 Firebase 平台

  • 2018-05-30
  • 本文字数:1262 字

    阅读完需:约 4 分钟

看新闻很累?看技术新闻更累?试试下载 InfoQ 手机客户端,每天上下班路上听新闻,有趣还有料!

谷歌近日推出了 ML KIT ,一个与 Firebase 移动开发平台完全集成的机器学习模块,可用于 iOS 和 Android 平台。通过这个新的 Firebase 模块,谷歌简化了创建机器学习驱动的移动应用的过程,并解决了在移动设备上实现计算密集型功能所面临的一些挑战。

ML KIT 允许移动开发者使用 Vision API 提供的一些模型(如图像标记、OCR 和人脸检测)来创建机器学习功能。 ML KIT 可直接在 Firebase 平台中使用,支持 Android 和 iOS 应用程序,以及其他基于 Google Cloud 的模块(如身份验证和存储)。

ML KIT 旨在解决移动设备特有的几项挑战,这些挑战是由人工智能计算密集型操作所引发的。目标是在模型精度和模型大小之间获得令人满意的折中,同时保持电池寿命,并在计算资源非常有限的环境中使用本地数据来刷新模型。

优化移动设备的机器学习是一种多层方法。在硬件层面, Android Neural Net API 是一种 Android C API,通过在可用设备处理器上分配计算工作负载来执行计算密集型操作。

在模型层,通过减少模型复杂性和大小来获得优化。为此,谷歌在一年前发布了 Tensorflow Lite ,而苹果此前也推出了 Core ML ,Facebook 则推出了 Coffee2Go 。这些轻量级格式便于在设备上下载预训练的模型,并对本地数据进行推断。不过,移动机器学习工程师 Eric Hsiao 说,从 Tensorflow 到 Tensorflow Lite 的转换仍然很复杂。

正如谷歌 ML KIT 产品经理 Brahim Elbouchikhi 在谷歌 I/O 2018 ML KIT 演讲中强调的那样,将移动机器学习带入移动设备,ML KIT 是第三需要用到的层,它将深度学习直接交给了移动应用开发者,并且直接在 Firebase 移动应用开发平台上进行。

ML KIT 支持设备和基于云的推断。设备推断可用于小型的模型,提供较低的准确性,不过是免费的。基于云的推断仅对前 1000 个 API 调用免费,但会带来更高的准确性。例如,设备上的图像标记功能可以访问 400 多个标签,而基于云的模型可以访问超过 10k 个标签。然而,设备推断带来更好的用户体验,提供实时交互功能并解决隐私问题,因为用户数据仍保留在手机上。

ML KIT 还允许通过 Firebase Remote Config 动态下载模型。模型上传到 Firebase 平台,并向用户动态提供,无需将模型捆绑到 Android 开发工具包中。这种灵活的模型部署能够进行简单的 A/B 测试,并为细分用户定制模型。

ML KIT 包含了一些预训练的模型,并可以访问一些 Google Machine Learning API 服务。它还允许集成在专有数据集上训练的定制模型。到目前为止,基础 API 提供的可用功能包括文本识别(OCR)、图像标签、条形码扫描、人脸检测和地标识别。预计脸部轮廓和智能回复将在近期发布。基于 Learn2Compress 的 Tensorflow 到 Tensorflow Lite 转换服务预计很快会推出。与此同时,开发者可以注册转换服务测试版。

请记住,ML KIT 才刚发布几周时间,开发者在论坛中提出了一些问题,这些问题主要与无法扫描条形码和文本识别有关,但图像分类方面的问题较少。

查看英文原文 Google Brings Machine Learning to Firebase with ML KIT

2018-05-30 13:5114809
用户头像

发布了 731 篇内容, 共 473.6 次阅读, 收获喜欢 2008 次。

关注

评论

发布
暂无评论
发现更多内容

AI重塑千行百业 华为云发布盘古大模型3.0和昇腾AI云服务

华为云开发者联盟

人工智能 华为云 华为云开发者联盟 企业号 7 月 PK 榜

C++实现读写ini配置文件

芯动大师

2023-07-07:给出两个字符串 str1 和 str2。 返回同时以 str1 和 str2 作为子序列的最短字符串。 如果答案不止一个,则可以返回满足条件的任意一个答案。 输入:str1 =

福大大架构师每日一题

Go 算法 rust 福大大架构师每日一题

985的分数,却毅然选择了普本。

Jackpop

你可能不知道现在的Java面试有多卷!

程序员小毕

程序员 高并发 架构师 java面试 八股文

GeaFlow图计算快速上手之PageRank算法

TuGraphAnalytics

PageRank 图算法 图计算 图论 GeaFlow

跨功能需求(CFR)/ 非功能性需求(NFR)的目标设定

码猿外

技术管理 非功能性需求 跨功能需求

代码随想录Day10 - 栈与队列(上)

jjn0703

机器学习洞察 | 降本增效,无服务器推理是怎么做到的?

亚马逊云科技 (Amazon Web Services)

机器学习

手把手教学小型金融知识图谱构建:量化分析、图数据库neo4j、图算法、关系预测、命名实体识别、Cypher Cheetsheet详细教学等

汀丶人工智能

人工智能 深度学习 nlp 知识图谱 命名实体识别

Dialpad 的“野心” ,不止于 2 亿美元 ARR

CnosDB

时序数据库 开源社区 CnosDB

阿里P6跟P7有什么区别?

程序员小毕

Java 阿里巴巴 程序员 后端 架构师

具备捕获 Web2 用户能力的 PoseiSwap,治理通证$POSE再度涨超 360%

西柚子

某米重新定义了985。。。

Jackpop

OpsGPT 智能运维大语言模型业界首发

乘云数字DataBuff

APM 可观测性 AIOPS Dynatrace Datadog

阿里云通义大模型家族迎来新成员,通义万相已开启定向邀测~

新云力量

AI 2023人工智能大会 科技改变生活

金融时间序列预测方法合集:CNN、LSTM、随机森林、ARMA预测价格(适用于时序问题)、相似度计算、各类评判指标绘图(数学建模科研适用)

汀丶人工智能

人工智能 数据挖掘 机器学习 数学建模 LSTM

考上211,录取到天坑专业。。。

Jackpop

上个大学,竟然被割韭菜了?

Jackpop

阿里云AI绘画创作大模型通义万相亮相,已开启定向邀测!

新云力量

AI 2023人工智能大会 科技改变生活

做大模型不要沉迷有趣,要解决企业问题

新云力量

AI 2023人工智能大会 科技改变生活

QEMU之CPU虚拟化(一):CPU虚拟化介绍

Linux内核拾遗

虚拟化 qemu kvm

谷歌推出ML KIT,将机器学习带到Firebase平台_移动_Alexis Perrier_InfoQ精选文章