2天时间,聊今年最热的 Agent、上下文工程、AI 产品创新等话题。2025 年最后一场~ 了解详情
写点什么

与 Julien Nioche 探讨基于 Apache Storm 的开源爬虫流水线 StormCrawler

  • 2016-12-26
  • 本文字数:1569 字

    阅读完需:约 5 分钟

Julien Nioche 是 DigitalPebble 公司的总监、PMC 成员和 Apache Nutch 网络爬虫项目的代码提交者。 StormCrawler 是一组可重用的组件,可以构建基于流式框架 Apache Storm 的分布式网络爬虫。Julien Nioche 就 StormCrawler 接受了我们的采访,谈了他的一些看法。

Nioche 是该项目的主要贡献者,InfoQ 采访他以了解更多关于 StormCrawler 的情况,以及在相同领域内它与其他技术相比有什么特点。

InfoQ:爬虫处理流水线在什么阶段可以受益于 StormCrawler?

Julien Nioche:StormCrawler 提供了代码和资源,可以用它来实现所有爬虫处理流水线的核心阶段,比如调度、获取、解析和生成索引等。它也为常用项目提供了可供调用的模块,比如 Apache Solr Elasticsearch MySQL 或者 Apache Tika 等。它还有一套可扩展的功能,可以用 XPath sitemaps 、URL 过滤器或语言识别等去做数据提取。

InfoQ:与其他爬虫技术,比如 Apache Nutch 和 Python 的 Scrapy 等相比较,StormCrawler 有什么特点?

Nioche:StormCrawler 是基于我开发 Apache Nutch 的经验开发的,很大程度上要归功于它,主要是一些概念(比如 FetcherBolt、URL 和解析过滤器的设计)和早期实现。StormCrawler 实现了 Nutch 的功能,并且像 Nutch 2.x 版一样,可以使用不同的后端数据库(HBase、Cassandra 等等)。

StormCrawler 和 Nutch 之间的主要区别是,后者基于(并且催生了)Apache Hadoop 项目,而且是批量驱动的。URL 提取、内容解析和生成索引都是作为单独的步骤完成的。这会导致当提取 URL 的时候,CPU 和磁盘的使用率相对较低,而网络流量高。而当解析或生成索引时则反之,CPU 和磁盘的使用率高,网络流量低。

与它相反,StormCrawler 基于流处理框架 Apache Storm 实现的,并且所有的操作都可以在同一时间进行:URL 提取、解析和生成索引都不断地并行进行。这就使整个爬取过程更加高效,而且没有长尾的工作量,而这是面向批处理方法的常见问题。与 Nutch 不同,处理内容不一定要保存在磁盘上(但如果必要的话也可以保存在磁盘上)。也可以用 StormCrawler 更容易地实现更丰富的用例,比如需要低延迟的时候,或者当 URL 成为流不断到达的时候(比如用户生成的事件,像访问页面等)。

把两者之间进行对比,我们可以发现 StormCrawler 运行在一个分布式的、可扩展的环境中,而 Scrapy 是单进程的,即使有像 Frontera 那样的项目去做分布式爬虫,。

StormCrawler 代表了 Apache Storm 的分布式和可靠性(再加上其他的功能,比如用户界面、指标框架和日志等)。

Scrapy 和 StormCrawler 都在力图实现用户友好性和为数据抓取提供好的解决方案。

总之我认为,StormCrawler 是 Nutch 的可扩展性和 Scrapy 的用户友好性的结合体。

InfoQ:爬取的工作量往往是 I/O 密集型的。与其他的替代品,比如 Apache Spark 或 Apache Flink 等相比,使用 Apache Storm 作为流处理框架的优势是什么?

Nioche:Apache Storm 设计和概念简单并且高效。Spark 那时还不存在。Spark 对数据进行小批量流处理的方式,及其声明式的风格并不非常适合我的需求。

爬行的主要挑战之一是礼貌,这个概念的意思是爬虫访问 Web 服务器的频率。与大多数的流式应用不同,它的目的并不只是尽可能快地获得尽可能多的信息,而是要有礼貌地执行但同时优化吞吐量。我们要进行更好的控制,Apache Storm 的机制恰好可以满足我们的需求。

InfoQ:StormCrawler 接下来的版本的路线图是什么?

Nioche:StormCrawler 的发展是由社区驱动的。最新发布的稳定版本是1.2,它是基于Storm 的1.x 版本开发的。下一个要发布的版本将包括语言识别模块,并且很有可能会提供一个新端口来支持 Elasticsearch 5 。在某种程度上即将发布的主要功能是实现基于 Selenium 的协议,这将适用于基于 Ajax 的网站。

查看英文原文 Julien Nioche on StormCrawler, Open-Source Crawler Pipelines Backed by Apache Storm

2016-12-26 18:007213
用户头像

发布了 152 篇内容, 共 79.5 次阅读, 收获喜欢 64 次。

关注

评论

发布
暂无评论
发现更多内容

ios证书类型及其作用说明

03. 人工智能核心基础 - 导论(2)

茶桁

人工智能 方法论 问题范式

专访中欧财富伍春兰:财富管理行业数字化转型升级,数据库如何选型?

TiDB 社区干货传送门

实践案例 数据库架构选型

实用帖|打破常规,巧用分层地毯的8种方法!

Finovy Cloud

C4D

ChatGPT 重磅更新可进行实时网络搜索;OpenAI 将构建新的“AI 硬件”丨RTE开发者日报 Vol.59

声网

基于云原生的集群自愈系统 Flink Cluster Inspector

Apache Flink

大数据 flink 实时计算

零基础Python经验体验代码检查工具

云计算 华为云 代码检查

采用get()和put()读写文件

芯动大师

c++

【AI产品】Podwise:AI助我听播客

无人之路

AI 播客 技术播客

【实践案例】软件差异化升级——吃包篇

golf

golang 后端 升级 吃包 差异化

ipaguard界面概览

Python 中的字符串基础与应用

小万哥

Python 开源 程序员 后端 开发

2万张优惠券限时抢!华为Mate60负一屏邀你观影国庆档喜剧

最新动态

软件差异化升级——差量包篇

golf

golang 后端 升级 差量包

使用 AI 编程助手 CodeWhisperer,开发如有神助

亚马逊云科技 (Amazon Web Services)

人工智能 亚马逊云科技

幸福城市平台:数据库选型与优化实践

TiDB 社区干货传送门

数据库架构选型

从传统到现代:语音识别技术的飞跃

数据堂

云原生数据湖为什么要选择腾讯云大数据DLC,一份性能分析报告告诉你!

腾讯云大数据

数据湖

HarmonyOS人才赋能交流会落地济南,共筑繁荣鸿蒙生态

最新动态

【运维实操】TIDB v6.1.1:全量备份、全量恢复和增量备份方法解析

TiDB 社区干货传送门

实践案例 安装 & 部署 备份 & 恢复

一场不发手机的发布会,一场沉默且浩瀚的远征

脑极体

手机

政务与大模型,在国云上相遇

脑极体

云计算

【中秋国庆不断更】XML在HarmonyOS中的生成,解析与转换(上)

HarmonyOS开发者

三地五中心,TiDB POC最佳姿势探索

TiDB 社区干货传送门

7.x 实践

华为校园公开课|哈尔滨工业大学(威海)圆满收官

最新动态

直播速递 | Hash Index 原理和应用精讲

KaiwuDB

【中秋国庆不断更】OpenHarmony定义扩展组件样式:@Extend装饰器

OpenHarmony开发者

OpenHarmony

与Julien Nioche探讨基于Apache Storm的开源爬虫流水线 StormCrawler_大数据_Alexandre Rodrigues_InfoQ精选文章