2025上半年,最新 AI实践都在这!20+ 应用案例,任听一场议题就值回票价 了解详情
写点什么

HN 网友分享 AI 在企业中的应用案例

  • 2016-12-27
  • 本文字数:1685 字

    阅读完需:约 6 分钟

2016 年,AI 在企业中的应用情况达到了怎样的程度?在 12 月的一篇 Hacker News 讨论帖中,诸多网友分享了其公司内部应用机器学习技术的情况。

数据的清洗、统计、建模、预测

为了追热点,这年头的大部分数据公司都说自己的产品服务用了机器学习。这相当引人争议——比如,线性回归算是机器学习吗?有人说是,因为机器学习的教程就是从线性回归开始的;有人说不是,因为这种基本的统计计算早在“机器学习”这个概念出来之前就有人在用了。

到底,怎样的系统有资格被称为“机器学习”系统呢?有人搬出了 Tom Mitchell 一段定义

“A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.”

比如你写了个下棋的程序,然后让它天天自己跟自己下棋玩;过了一段时间,如果你发现它的棋力提升了,那就证明它具备学习能力。同理,如果你写了一个预测的程序,然后让它天天看各种历史数据;过了一段时间,如果你发现它的预测准确率提升了,那就证明它具备学习能力。(不过反过来,这样的定义却无法证明一个系统不具备学习能力……)

有些数据处理系统并不具备学习功能。很多数据处理系统并不需要具备学习功能。不过,机器学习的能力正在越来越多的应用到数据处理的场景中,这是毋庸置疑的。尤其在金融行业,制作风险模型、进行花费预测、损失预测,都有广泛的应用。比较有趣的是有人提到 Numerai ,这里聚集了一大批给股市建模的数据科学家,大家把自己的预测拿出来公开比赛。

此外,有一个用户 @splike 表示他们的系统可以预测一次基因编辑操作(CRISPR)的有效程度。还有一个叫做 Queckt 的系统可以预测一个 JIRA 工单需要多久能被解决。(话说这系统是要用来对付产品经理的么……)

客户管理 KYC

几乎半数的回复都涉及客户管理方面的应用,如:

  • Amazon Personalization ,亚马逊的个性化推荐系统
  • Coursera 的个性化课程推荐系统
  • 预测客户流失,如 AppURI
  • 金融 / 电信行业反欺诈服务,如 SkyMind
  • 从众多的客户留言中自动筛选出那些“不高兴的客户”

模式识别

  • 有一位来自制造业的用户 @altshiftprtscrn 表示他们用声学显微镜进行次品检测,用决策树模型提升系统识别次品的正确率
  • @strebler 就职于一家计算机视觉公司,该公司开发了几个针对零售商的产品,可以根据图像自动识别商品并提供后续服务
  • Sumo Logic ,针对大规模服务器集群(主要是 AWS 和 Azure 应用)分析系统日志以协助故障排查。 SkyMind 也提供了类似的服务针对 OpenStack 部署。 Graphistry 也提供类似的服务
  • Persyst ,用神经网络学习脑电图 / 心电图,识别各种疾病的症状
  • Qualia.ai ,识别网络舆论上出现的新生热门话题
  • Matterport ,针对房地产行业,其系统根据摄像师提供的房屋全景照片制作 3D 模型与介绍视频
  • Attentive.ai ,针对安防摄像头拍到的录像进行分析,自动抽取其中的“异常事件”并发送报警
  • Diffbot ,自动抓取网页中的纯内容,移除与内容无关的页面元素。John Davi在 Quora 上介绍过 Diffbot 用来提高抓取准确度的算法

决策助理

  • 用户 @iamed2 的系统能够为电网中的交互行为建模,从而提供建议以优化电网的效率。他说,“如果你很了解你的数据关系,那么机器学习也许对你是没用的。但如果你不了解你的数据关系,那么机器学习就变得很有用了。”
  • 用户 @ilikeatari 的系统能够针对用户的用车历史提供建议,告诉他们何时把旧车卖掉再买入新车是最划算的。目前,他们的客户主要是美军舰队
  • Optimail ,邮件推广自动化,自动抓取你的网站以生成推广邮件 / 短信,配合强化学习算法以提升推广成功率

总结

2016 年初, mldb 博客上发布了一篇文章:《当机器学习遇到经济世界》(文章第二部分在此)。到2016 年底,正如用户 @strebler 在帖子中所说,“AI/ML 在最近这段时间的发展,真真切切的将之前的一些不可能化为了可能“。2017 年,这个领域的发展将更加值得关注。


感谢郭蕾对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2016-12-27 18:001945

评论

发布
暂无评论
发现更多内容

AI听力练习APP的测试

北京木奇移动技术有限公司

软件外包公司 AI口语练习 AI英语口语

用精准与效率说话,一招解决 SQL Server 迁移痛点

NineData

SqlServer NineData 国产化替代 云原生智能数据管理平台 上云迁移

和鲸科技推出人工智能通识课程解决方案,助力AI人才培养

ModelWhale

人工智能 大数据 #AI 人工智能通识课 课改

今晚 8 点直播:Alexa+ 让 6 亿终端瞬间获得 AI 能力!端侧智能都有哪些开发者机会?丨 RTE Dev Talk

声网

【万字长文】开源之播对话白鲸开源CEO郭炜--乐观主义的开源精神走得更远

Apache SeaTunnel

开源社区 人物访谈 开源商业

YashanDB事务操作

YashanDB

数据库 yashandb

一台电脑如何搞定手机矩阵(教你从网络搭建开始做矩阵)

kookeey代理严选

亚马逊 TikTok 跨境矩阵 跨进电商

Lume:轻量级虚拟机管理工具

FunTester

蚂蚁技术研究院发布推理大模型强化学习框架,邀请开发者共同助力 AGI 生态

蚂蚁开源

AGI RL 蚂蚁开源 LRM

精选案例展|《金融电子化》:打造郑州银行一体化及可观测的智能运维体系

博睿数据

除了DeepSeek,还有哪些好用的AI软件呢?

职场工具箱

人工智能 职场 AI软件 AIGC DeepSeek

Apache SeaTunnel 构建实时数据同步管道(最新版)

Apache SeaTunnel

数据同步 数据集成 CDC Seatunnel

天下武功,唯快不破

CloudStudio

cloudstudio

YashanDB索引操作

YashanDB

数据库 yashandb

YashanDB数据操作

YashanDB

数据库 yashandb

面试官:你项目是如何实现读写分离的?

不在线第一只蜗牛

程序员 面试

Lindorm作为AI搜索基础设施,助力Kimi智能助手升级搜索体验

阿里云瑶池数据库

阿里云 数据库· 智能搜索

【FAQ】HarmonyOS SDK 闭源开放能力 —Push Kit(9)

HarmonyOS SDK

harmoyos

基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成

Apache Flink

flink kafka 实时计算 数据集成

NocoBase 本周更新汇总:新增路由管理

NocoBase

开源 低代码 零代码 无代码 版本更新

大模型驱动智能合规 | 构建企业个保审计新范式

百度安全

YashanDB数据操作

YashanDB

数据库 yashandb

如何建设IT运维管理体系

易成研发中心

IT运维管理

IT项目管理中开发项目时都有哪些角色

易成研发中心

项目管理

HN网友分享AI在企业中的应用案例_语言 & 开发_sai_InfoQ精选文章