写点什么

HN 网友分享 AI 在企业中的应用案例

  • 2016-12-27
  • 本文字数:1685 字

    阅读完需:约 6 分钟

2016 年,AI 在企业中的应用情况达到了怎样的程度?在 12 月的一篇 Hacker News 讨论帖中,诸多网友分享了其公司内部应用机器学习技术的情况。

数据的清洗、统计、建模、预测

为了追热点,这年头的大部分数据公司都说自己的产品服务用了机器学习。这相当引人争议——比如,线性回归算是机器学习吗?有人说是,因为机器学习的教程就是从线性回归开始的;有人说不是,因为这种基本的统计计算早在“机器学习”这个概念出来之前就有人在用了。

到底,怎样的系统有资格被称为“机器学习”系统呢?有人搬出了 Tom Mitchell 一段定义

“A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.”

比如你写了个下棋的程序,然后让它天天自己跟自己下棋玩;过了一段时间,如果你发现它的棋力提升了,那就证明它具备学习能力。同理,如果你写了一个预测的程序,然后让它天天看各种历史数据;过了一段时间,如果你发现它的预测准确率提升了,那就证明它具备学习能力。(不过反过来,这样的定义却无法证明一个系统不具备学习能力……)

有些数据处理系统并不具备学习功能。很多数据处理系统并不需要具备学习功能。不过,机器学习的能力正在越来越多的应用到数据处理的场景中,这是毋庸置疑的。尤其在金融行业,制作风险模型、进行花费预测、损失预测,都有广泛的应用。比较有趣的是有人提到 Numerai ,这里聚集了一大批给股市建模的数据科学家,大家把自己的预测拿出来公开比赛。

此外,有一个用户 @splike 表示他们的系统可以预测一次基因编辑操作(CRISPR)的有效程度。还有一个叫做 Queckt 的系统可以预测一个 JIRA 工单需要多久能被解决。(话说这系统是要用来对付产品经理的么……)

客户管理 KYC

几乎半数的回复都涉及客户管理方面的应用,如:

  • Amazon Personalization ,亚马逊的个性化推荐系统
  • Coursera 的个性化课程推荐系统
  • 预测客户流失,如 AppURI
  • 金融 / 电信行业反欺诈服务,如 SkyMind
  • 从众多的客户留言中自动筛选出那些“不高兴的客户”

模式识别

  • 有一位来自制造业的用户 @altshiftprtscrn 表示他们用声学显微镜进行次品检测,用决策树模型提升系统识别次品的正确率
  • @strebler 就职于一家计算机视觉公司,该公司开发了几个针对零售商的产品,可以根据图像自动识别商品并提供后续服务
  • Sumo Logic ,针对大规模服务器集群(主要是 AWS 和 Azure 应用)分析系统日志以协助故障排查。 SkyMind 也提供了类似的服务针对 OpenStack 部署。 Graphistry 也提供类似的服务
  • Persyst ,用神经网络学习脑电图 / 心电图,识别各种疾病的症状
  • Qualia.ai ,识别网络舆论上出现的新生热门话题
  • Matterport ,针对房地产行业,其系统根据摄像师提供的房屋全景照片制作 3D 模型与介绍视频
  • Attentive.ai ,针对安防摄像头拍到的录像进行分析,自动抽取其中的“异常事件”并发送报警
  • Diffbot ,自动抓取网页中的纯内容,移除与内容无关的页面元素。John Davi在 Quora 上介绍过 Diffbot 用来提高抓取准确度的算法

决策助理

  • 用户 @iamed2 的系统能够为电网中的交互行为建模,从而提供建议以优化电网的效率。他说,“如果你很了解你的数据关系,那么机器学习也许对你是没用的。但如果你不了解你的数据关系,那么机器学习就变得很有用了。”
  • 用户 @ilikeatari 的系统能够针对用户的用车历史提供建议,告诉他们何时把旧车卖掉再买入新车是最划算的。目前,他们的客户主要是美军舰队
  • Optimail ,邮件推广自动化,自动抓取你的网站以生成推广邮件 / 短信,配合强化学习算法以提升推广成功率

总结

2016 年初, mldb 博客上发布了一篇文章:《当机器学习遇到经济世界》(文章第二部分在此)。到2016 年底,正如用户 @strebler 在帖子中所说,“AI/ML 在最近这段时间的发展,真真切切的将之前的一些不可能化为了可能“。2017 年,这个领域的发展将更加值得关注。


感谢郭蕾对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们。

2016-12-27 18:002035

评论

发布
暂无评论
发现更多内容

2023前端一面vue面试题合集

yyds2026

Vue 前端

前端一面常见面试题及答案

coder2028

JavaScript 前端

Nodejs+Redis实现简易消息队列

coder2028

JavaScript 前端

国外的SRE都是干啥的?薪资如何?

巴辉特

SRE

喜讯!华秋电子荣获第六届“蓝点奖”十佳分销商奖

华秋电子

这些数据可视化工具必备

2D3D前端可视化开发

数据可视化 数据可视化工具 可视化大屏 可视化图表 sovitchart

从银行数字化转型来聊一聊,火山引擎VeDI旗下ByteHouse的应用场景

字节跳动数据平台

大数据 Clickhouse 数据平台 企业号 2 月 PK 榜

Vue组件是怎样挂载的

yyds2026

Vue 前端

20道前端高频面试题(附答案)

Geek_02d948

JavaScript 前端

javascript尾递归优化

hellocoder2029

JavaScript 前端

有哪些前端面试题是必须要掌握的

hellocoder2029

JavaScript 前端

高级前端面试题汇总

hellocoder2029

JavaScript 前端

软件测试/测试开发 | 黑盒测试方法论-判定表

测试人

软件测试 测试开发 测试用例 黑盒测试

多级分流

胖子笑西风

Java 架构 高并发 流量

webpack模块化的原理

Geek_02d948

JavaScript 前端

助力硬件创新,华秋电子荣获科技创新示范奖

华秋电子

Nodejs相关ORM框架分析

coder2028

JavaScript 前端

使用 PGO 优化 Databend 二进制构建

Databend

NFT碎片化股权分割众筹dapp系统开发合约定制

开发微hkkf5566

flutter系列之:Navigator的高级用法

程序那些事

flutter 架构 大前端 程序那些事

字节前端必会面试题(持续更新中)

Geek_02d948

JavaScript 前端

javascript 高级编程 之 Array 用法总结

hellocoder2029

JavaScript 前端

全民开发者时代到来!华为云开发者日深圳站成功举办

华为云开发者联盟

云计算 华为云 ChatGPT 企业号 2 月 PK 榜 华为云开发者联盟

低代码开发平台 助力教育行业信息化建设

力软低代码开发平台

webpack实战,手写loader和plugin

Geek_02d948

JavaScript 前端

ChatGPT热度“狂飙”,OceanBase也去找它唠了唠

OceanBase 数据库

数据库 oceanbase

大中华区联合企业捷成集团在 AWS 上使用 F5 防御恶意 Web 攻击

F5 Inc

腾讯前端二面常考vue面试题(附答案)

yyds2026

Vue 前端

图文实录|澜舟科技合伙人李京梅:基于预训练模型的 AIGC 技术与应用实践

澜舟孟子开源社区

AI NLP 大模型 AIGC

一文详解ATK Loss论文复现与代码实战

华为云开发者联盟

人工智能 华为云 企业号 2 月 PK 榜 华为云开发者联盟

IoT 存量设备 零改造,泛化SDK实现整体业务迁移上云——实践类

阿里云AIoT

前端开发 物联网 开发工具 传感器 测试技术

HN网友分享AI在企业中的应用案例_语言 & 开发_sai_InfoQ精选文章