写点什么

为什么超过 80% 的资源利用率会成为任何系统的噩梦

  • 2016-02-24
  • 本文字数:1411 字

    阅读完需:约 5 分钟

Skipjaq ,我们关注应用在最高可持续负载状态下的性能表现。在此状态下,应用的负载不至于过饱和乃至崩溃,但也没有丝毫空闲,可以说是该应用性能最真实的体现。我们尤其关注的是,应用在临近极限情况下会产生怎样的延时。

在最近的一次有关 Web 应用延时的团队讨论当中,我提到一个通用准则:延时在服务利用率(utilisation)超过 80% 之后会呈现明显的恶化。再说得确切一点,是服务等待时间(wait time)的恶化导致了延时(latency)的恶化。

John D. Cook 为此撰写过一篇很长的文章进行说明,不过我想再补充一些更深入的说明,以便于没接触过队列理论(queuing theory)的读者们理解。

服务即队列

80% 这个数字来自于队列理论。首先,我们看一下为什么 Web 应用服务符合队列理论的模型。

假设我们正要测量一个 Web 应用(服务)的延时,该应用运行在单台服务器上。请求到达服务并被处理掉。如果在一个新请求进入的时候,该服务仍然在处理之前的其他请求,则新请求就需要排队等待。出于简化的考虑,我们假设该队列可以无限延长,并且任何进入队列的请求都仅在服务完成其处理之后才离开队列。

对于本场景而言,最简单的队列模型是 M/M/1 模型。M/M/1 是 Kendall 标记法,此处的通用形式是 A/S/c,其中 A 代表到达过程,S 代表服务时间分布,c 代表服务器的数量。

在本处简化的场景中,我们只有一台服务器,所以 c = 1。模型中的 M 代表马可夫(Markov)。马可夫式的到达过程描述了一个泊松过程:每两个请求到达的间隔时间呈指数分布,其参数为;马可夫式的服务时间分布也描述了一个泊松过程:完成一次服务的时间呈指数分布,其参数为

队列利用率

我们所说的服务利用率,其定义为:服务用于处理请求所花费的时间百分比。对于上述M/M/1 队列而言,服务利用率的计算方式为:

队列在时处于稳定态,这符合直觉:如果单位时间内的新增请求数大于被处理完毕的请求数,则队列将会无限延长。

延时的计算

利特尔法则是从队列理论推演出的最有趣的结论之一。简单来说,在一个稳定系统当中,客户的平均数量(L)等于其到达率()与每个客户在系统中平均耗时(W)的乘积:

对于每一位客户而言,其在系统中的平均耗时就相当于是该客户所感受到的延时。该数值由服务时间和等待时间两部分组成。直觉上,平均服务时间基本上是固定的,所以延时的变动主要取决于等待时间的变动。

我们现在关心的是延时,所以让我们把公式转换到另一边:

也就是说,如果我们知道系统中的平均客户数量,我们就能够计算出等待时间。在一个M/M/1 队列中,客户数量的平均数的计算方式为:

具体的推导过程不在本文中赘述,感兴趣的读者可以参阅这篇文章

上面说过,服务利用率,所以:

这样,我们就有了一个有关延时与到达率、服务完成率之间关联性的简化公式。现在我们进一步想要得到延时与利用率之间的关联公式,这就需要套用到上面的公式中:

综上所述,我们已经假设服务时间是固定的,即:是常量。所以,延时与成比例关系。将该公式画成图表:

可以明显看到延时在利用率超过80% 之后就开始飙升。利用率越接近100%,延时越倾向于无限大。

结论

延时在服务利用率超过80% 之后迅速恶化。所以为了避免在生产环境手忙脚乱的处理延时问题,我们应当监控系统利用率,确保其不超过80% 的危险范围。

给系统进行性能测试的时候,让系统负载到80% 以上的结果往往都是延时无法达标,而让系统负载到接近100% 则意味着你要等很久才能拿到测试结果!

英文原文: Relating Service Utilisation to Latency

2016-02-24 18:005953

评论

发布
暂无评论
发现更多内容

基于Go语言的滴滴DevOps重塑之路

滴滴技术

DevOps 滴滴技术 #go

倒计时 2 天|请收好 Kyligence 用户大会参会指南

Kyligence

数据分析 指标平台

C++中map的使用方法

芯动大师

从0到1:垃圾上门回收预约小程序开发笔记

CC同学

2023-07-12:RocketMQ如何做到消息不丢失?

福大大架构师每日一题

福大大架构师每日一题

你信不信,只要学几天javascript就可以使用纯原生实现五星评分效果 【附完整代码】

Geek_yx5md7

JavaScript 前端开发 函数 前端基础 DOM操作

什么是HTML5?HTML5的含义、元素和好处

互联网工科生

html html5

初识滴滴交易策略之一:交易市场

滴滴技术

算法 滴滴技术

你需要知道的Symbols

不在线第一只蜗牛

前端 symbol

生成式AI的发展、应用及影响 | 社区征文

Dec

年中技术盘点

新兴技术的影响与展望:生成式AI及更多思考|社区征文

小诚信驿站

年中技术盘点

AIGC 对程序员的影响 | 社区征文

sidiot

AI AIGC 年中技术盘点

企业是如何做到持续规划的?

智达方通

全面预算管理 持续规划 年度计划流程

UINO优锘科技受邀在2023全球数字经济大会数字孪生赋能城市数字化转型论坛发表演讲

ThingJS数字孪生引擎

数字化转型 智慧城市 数字孪生 #web3D ThingJS

图加速数据湖分析-GeaFlow和Hudi集成

TuGraphAnalytics

数据湖 图计算 Hudi 数据湖分析 GeaFlow

阿里云Redis与Tair压力测评

WizInfo

机器学习洞察 | 挖掘多模态数据机器学习的价值

亚马逊云科技 (Amazon Web Services)

机器学习

代码随想录 Day14 - 二叉树(一)

jjn0703

和鲸数据科学专家平台正式成立,凝聚专家资源推进产业数字化升级

ModelWhale

人工智能 数据科学 专家平台 专家资源

2023世界人工智能大会,和鲸科技入选中国信通院《2023大模型和AIGC产业图谱》

ModelWhale

人工智能 数据科学 大模型 AIGC 世界人工智能大会

Docker学习路线3:安装设置

小万哥

Docker 容器 后端 开发 开发程序员

小度全屋智能携大模型应用惊艳亮相中国建博会,智慧体验演绎未来家居新标准

新消费日报

没收入是表象,UMU CEO李东朔的出海经验:第一年破100国家

B Impact

go 实现ringbuffer以及ringbuffer使用场景介绍

蓝胖子的编程梦

TCP 网络 epoll ringbuffer 环形缓冲区

代码随想录 Day15 - 二叉树(二)

jjn0703

为什么超过80%的资源利用率会成为任何系统的噩梦_语言 & 开发_sai_InfoQ精选文章