写点什么

数据科学中最好的 5 个机器学习 API

  • 2015-12-17
  • 本文字数:1862 字

    阅读完需:约 6 分钟

机器学习作为大数据的前沿无疑是让人生畏的,因为只有技术极客和数据科学领域的专家才能驾驭机器学习算法和技术,对于大部分企业和组织而言,过去这一直都是一个遥不可及的事情。但是现在这种情况正在发生改变,正如标准的 API 简化了应用程序的开发一样,机器学习 API 也降低了这一领域的门槛,让越来越多的人和企业能够借助技术底蕴深厚的公司所提供的 API 试水机器学习。

机器学习 API 隐藏了创建和部署机器学习模型的复杂性,让开发者能够专注于数据挖掘和用户体验。同时,将机器学习商业化成云服务也是当今的趋势,IBM、Microsoft、Google、Amazon 以及 BigML 等公司都为业务分析师和开发人员提供了自己的机器学习即服务(MLaaS),最近 Khushbu Shah 在 KDnuggets 上发表了一篇文章,介绍了这5 个公司的机器学习API

IBM Watson

IBM Watson Developer Cloud 于 2013 年十一月推出,它提供了一套完整的 API,简化了数据准备的流程,让开发者能够更容易地运行预测分析。作为一个认知服务,IBM Watson API 允许开发人员利用机器学习技术,如自然语言处理、计算机视觉以和预测功能,来构建更加智能的产品、服务或者应用程序,通过在应用中嵌入 IBM Watson,开发者还能够更好地理解用户是如何与应用程序交互的。

IBM Watson 是一个包含听、看、说以及理解等感知功能的扩展工具集,它提供的 API 超过了 25 个,涵盖了近 50 种技术,其中最主要的服务包括:

  • 机器翻译——帮助翻译不同语言组合中的文本
  • 消息共振——找出短语或单词在预定人群中的流行度
  • 问答——为主文档来源触发的查询提供直接的答案
  • 用户模型——根据给定的文本预测人们的社会特征

Microsoft Azure 机器学习 API

Microsoft Azure 机器学习是一个用于处理海量数据并构建预测型应用程序的平台,该平台提供的功能有自然语言处理、推荐引擎、模式识别、计算机视觉以及预测建模等,为了迎合数据科学家的喜好,Microsoft Azure 机器学习平台还增加了对 Python 的支持,用户能够直接将 Python 代码片段发布成 API。借助于 Microsoft Azure 机器学习 API,数据科学家能够更容易地构建预测模型并缩短开发周期,其主要特性包括:

  • 支持创建自定义的、可配置的 R 模块,让数据分析师或者数据科学家能够使用自己的 R 语言代码来执行训练或预测任务
  • 支持自定义的 Python 脚本,这些脚本可以使用 SciPy、SciKit-Learn、NumPy 以及 Pandas 等数据科学类库
  • 支持 PB 级的数据训练,支持 Spark 和 Hadoop 大数据处理平台

Google 预测 API

Google 预测 API 是一个云端机器学习和模式匹配工具,它能够从 BigQuery 和 Google 云存储上读取数据,能够处理销售机会分析、客户情感分析、客户流失分析、垃圾邮件检测、文档分类、购买率预测、推荐和智能路由等用户场景。使用 Google 预测 API 的用户不需要人工智能的知识,只需要有一些基础的编程背景即可。Google 预测 API 支持众多的编程语言,比如 .NET、Go、Google Web Toolkit、JavaScript、Objective C、PHP、Python、Ruby 和 Apps Script,基本覆盖了主流的编程语言。

Amazon 机器学习 API

Amazon 机器学习API 让用户不需要大量的数据专家就能够实现模型构建、数据清洗和统计分析等工作,简化了预测的实现流程。虽然该 API 有一些 UI 界面或者算法上的限制,但是却是用户友好和向导驱动的,它为开发者提供了一些可视化工具,让相关 API 的使用更直观、也更清晰。

Amazon 机器学习 API 支持的用户场景包括:

  • 通过分析信号水平特征对歌曲进行题材分类
  • 通过对智能设备加速传感器捕获的数据以及陀螺仪的信号进行分析识别用户的活动,是上楼、下楼、平躺、坐下还是站立不动
  • 通过分析用户行为预测用户是否能够成为付费用户
  • 分析网站活动记录,发现系统中的假用户、机器人以及垃圾邮件制造者

BigML

BigML 是一个对用户友好、对开发者友好的机器学习 API,该项目的动机是让预测分析对用户而言更简单也更容易理解。BigML API 提供了 3 种重要的模式:命令行接口、Web 接口和 RESTful API,其支持的主要功能包括异常检测、聚类分析、决策树的 SunBurst 可视化以及文本分析等。

借助于 BigML,用户能够通过创建一个描述性的模型来理解复杂数据中各个属性和预测属性之间的关系,能够根据过去的样本数据创建预测模型,能够在 BigML 平台上维护模型并在远程使用。


感谢杜小芳对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入 InfoQ 读者交流群(已满),InfoQ 读者交流群(#2))。

2015-12-17 18:005023
用户头像

发布了 321 篇内容, 共 128.2 次阅读, 收获喜欢 19 次。

关注

评论

发布
暂无评论
发现更多内容

基于 TiDB Vector 开发的 TiDB AI 小助手上线啦!招募 200 名试用体验官,开启高效问题解决之旅

TiDB 社区干货传送门

易于使用的 PDF 编辑器和注释器 PDF Expert for Mac

Rose

云起无垠入围“2024第五届“科创中国”科技创新创效大赛总决赛TOP10企业榜单”

云起无垠

百度智能云 VectorDB 优势项目数量并列 TOP 1

Baidu AICLOUD

Milvus Zilliz 向量数据库 VDB

利用人工智能 ChatGPT 提升测试开发能力:通往高效之路

测试人

软件测试

一文读懂计算机视觉「目标检测」的基本原理和主流模型

Zilliz

人工智能 计算机视觉 目标检测

一文解读GaussDB(DWS)监控运维诊断优化能力

华为云开发者联盟

sql 数据仓库 GaussDB

TiDB v8.5 LTS 新版本解密

TiDB 社区干货传送门

数据库前沿趋势 8.x 实践

荣誉|奇点云入选首批“百舸企业”名单

奇点云

探究亚马逊详情API接口:开发与应用

科普小能手

API API 接口 亚马逊API 亚马逊商品详情API 亚马逊API接口

淘宝商品详情API:如何通过商品ID获取全面信息

代码忍者

API 接口 pinduoduo API

从 DB2 迁移到 TiDB (CDC)

TiDB 社区干货传送门

Go Web服务中如何优雅平滑重启?

左诗右码

如何区分产品研发管理和研发项目管理?实用指南

易成研发中心

项目管理 产品研发 产品研发管理

SQL Server 迁移到 TiDB

TiDB 社区干货传送门

我们是如何实现 TiDB Cloud Serverless 的 - 成本篇

TiDB 社区干货传送门

TiDB Cloud

数据规模超 1PB !揭秘网易游戏规模化 TiDB SaaS 服务建设

TiDB 社区干货传送门

集群管理

星辰资讯 | TiDB v7.5.4 & v8.4.0 发版

TiDB 社区干货传送门

版本升级

小公司如何做好项目管理工作?管理者的实战经验

易成研发中心

项目管理 程序员 项目软件管理

Linux 文件处理命令:掌握文件管理的利器

测试人

软件测试

从 Oracle 迁移到 TiDB (OGG)

TiDB 社区干货传送门

从 MongoDB 迁移到 TiDB

TiDB 社区干货传送门

量子计算与人工智能的交汇:科技未来的新引擎

天津汇柏科技有限公司

人工智能 量子计算

电脑重装系统后硬盘数据可以恢复吗?系统重装后以前的文件怎么找回来?

阿拉灯神丁

EasyRecovery 数据恢复软件 电脑 备份 & 恢复 系统还原

电子电器组装行业MES系统解决方案

万界星空科技

mes 万界星空科技mes 电子mes 电子行业 电子电器行业

TiDB数据库的垃圾回收机制

TiDB 社区干货传送门

监控 管理与运维

探索DDCA:深入理解内存架构、子系统与内存控制器

代码忍者

「混合专家模型」可视化指南:A Visual Guide to MoE

Baihai IDP

程序员 AI LLMs MoE 混合专家模型

SqlServer 到 TiDB(DATAX)

TiDB 社区干货传送门

数据科学中最好的5个机器学习API_大数据_孙镜涛_InfoQ精选文章