写点什么

Gmail Inbox 发布基于深度学习的智能回复功能

  • 2015-11-13
  • 本文字数:1734 字

    阅读完需:约 6 分钟

作为日常工作最主要的沟通手段,Email 在发明后几十年仍然活跃在工作第一线,越来越多的智能功能被添加进来。近日,继旅程助手提醒推荐功能以后,Gmail 团队发布了Inbox 最新功能:智能回复(Smart Reply)(界面如下图),并撰文阐述了背后基于深度学习的实现思路

推出智能回复功能的契机很直白:由于工作强度的增强,人们的交流日益频繁,然而大多数人有用手机收发邮件的习惯,使得回复Email 有时变成了很烦躁的事情,费时费力。而很多时候,工作邮件都可以通过一些简短的回复例如“正在尝试”、“马上发给您”、“开会时讨论一下”等等来解决。智能回复就是基于这种考虑,通过深度学习技术,来“猜测”可能的简短回复,帮用户简化回复过程。智能回复会基于用户收到的邮件内容,来推荐三个可能的回复供用户选择,一个直观的展示参见下图:

智能回复将此前数次按键输入直接简化为一两次,极大方便了用户,提高了Inbox 体验,而后台支撑该功能的技术却是相当复杂。Inbox 利用机器学习技术(确切来讲是深度学习技术)识别那些能够被“秒回”的邮件,并动态生成回复。值得一提的是,用户选择智能回复词的过程中,后台的机器学习模型会根据选择不断迭代。下面再介绍一些具体的技术细节。

在展开介绍之前,多说一句Google 内部的很多项目都在使用机器学习技术来改进用户体验,比如利用深度学习改进语音搜索 YouTube 缩略图等等。因此 Gmail 团队的 Bálint Miklós 看到了上文中提到的回复邮件痛点,找到资深科学家 Greg Corrado,后者表示了极大的兴趣。

智能回复的原理是很复杂的,涉及到自然语言理解和生成技术,这些技术多用于机器翻译,而回复邮件也可以抽象认为是个机器翻译问题,即来信是一种语言,而回信是另一种语言,智能回复就是要理解来信,并“翻译”生成回信。长期的实践已经表明相关技术并没有发展到能直接应用到产品中的程度,大部分时间都只能实现一些逗乐聊天机器人。但对于智能回复词这一特定场景,是能够给出比较满意答案的。Google 科学家 Oriol Vinyals, Ilya Sutskever 和 Quoc Le 在去年曾重点研究理解和生成技术,称为序列学习,Greg 的同事Anjuli Kannan 在此基础上开发了可生成智能回复的产品级神经网络。

类似其他序列学习系统,智能回复功能由一对RNN 组成,如下图所示。

一个用来对用户收到的邮件内容进行编码,另一个则用来预测可能的回复。编码网络一次读入一个单词,然后生成一个由数字组成的向量。该向量被Geoff Hinton 老先生称为“ thought vector ”,能够在一定程度上表达邮件的语义。在这种情况下,英文句子“Are you free tomorrow?”和句子“Does tomorrow work for you?”语义距离更近。第二个网络根据 thought vector 来生成一个语义语法都正确的回复。值得一提的是,整个网络都无需任何人工接入,完全通过历史邮件和回复来学习模型。

Greg 提到,跟邮件打交道的一个挑战就是,学习模型的输入和输出都很长,有时多达几百单词。因此需要选择合适的 RNN 模型,Google 选择的是 LSTM 模型,能够很好处理比较远的单词之间的依赖关系,并能够发现邮件内容中最重要的部分,而不会被附近的短句所影响。Greg 还提到,另一个挑战就是用户的隐私问题,在模型训练的过程当中,要保证没有任何人阅读用户的邮件,全程都是机器自动化操作。

最后 Greg 还分享了开发过程中的一些感受。最开始的时候,智能回复给出的三个答案基本意思相同,用户很难取舍。最后机器学习专家 Sujith Ravi 解决了这个问题,并表示这是一个典型的“回复多样性”缺乏问题,可通过计算句子语义相似度来解决,而不仅仅是考虑单词的相似度。另一个早期版本中的问题是不管邮件内容是什么,智能回复都倾向给出“I love you”的回复,因为类似感谢、听起来不错和我爱你这样的回复太常见了。后来通过对可能回复的概率进行归一化解决,使得回复不但常见,而且要和邮件的内容也比较相关。

据悉,智能回复功能将会在下周发布的 iOS 和 Android 版本中,感兴趣的读者可以进行更新尝试。


感谢杜小芳对本文的审校。

给InfoQ 中文站投稿或者参与内容翻译工作,请邮件至 editors@cn.infoq.com 。也欢迎大家通过新浪微博( @InfoQ @丁晓昀),微信(微信号: InfoQChina )关注我们,并与我们的编辑和其他读者朋友交流(欢迎加入 InfoQ 读者交流群)。

2015-11-13 18:002435
用户头像

发布了 268 篇内容, 共 133.2 次阅读, 收获喜欢 24 次。

关注

评论

发布
暂无评论
发现更多内容

HyperWorks卫星惯性释放分析(OptiStruct)

智造软件

仿真 Hypermesh hyperworks

推荐几个常用免费的文本转语音工具

石臻臻的杂货铺

2025“一录同行”广州首站落幕!金贝灯光赋能影视创作新浪潮

科技热闻

Mint Blockchain 主网上线一周年回顾:增长之年与未来展望

NFT Research

NFT web3、

浅谈低代码开发中的元数据框架

inBuilder低代码平台

理解 C# 中的各类指针

电子尖叫食人鱼

Java C#

AI赋能时尚零售供应链智能决策:四大核心价值重构竞争力

第七在线

中国版Cursor:基于CodeBuddy与EdgeOne Pages的在线键盘测试工具开发方案

穿过生命散发芬芳

MCP CodeBuddy CodeBuddy首席试玩官

新疆五家等保测评机构名称以及地址汇总

行云管家

网络安全 等保 等保测评 等保测评机构

YashanDB|JDBC getString 取 DATE 字段不带时分秒?两个方法解决!

数据库砖家

数据库

项目管理协作工具:Teambition VS Leangoo

axe

Teambition leangoo 项目管理协作工具

YashanDB|Oracle 中的 pipelined 表函数迁移不过?这样改写就对了

数据库砖家

数据库

C#多线程编程精要:从用户线程到线程池的效能进化论

不在线第一只蜗牛

C#

YashanDB|服务器重启后数据库无法启动?别忘了这个关键服务

数据库砖家

数据库

CAD图纸如何进行坐标标注?

在路上

cad cad看图

macOS Sonoma 14.7.6 (23H626) Boot ISO 原版可引导镜像下载

sysin

macos

macOS Sequoia 15.5 (24F74) Boot ISO 原版可引导镜像下载

sysin

macos

YashanDB |报错 no free block in dictionary cache?共享集群中的卡顿真凶找到了

数据库砖家

数据库

开源大数据平台建设经典案例合集

阿里云大数据AI技术

人工智能 数据库 大数据 数据分析 数据处理

SEO与渲染方式

溪抱鱼

JavaScript typescript

CAD三维图纸如何测量?详细教程来了

在路上

cad cad看图 CAD看图王

智源联合南开大学开源Chinese-LiPS中文多模态语音识别数据集

智源研究院

YashanDB|IN 参数超 300 个,查询突然变慢?问题可能出在执行计划上

数据库砖家

数据库·

CST软件如何将单端转换为差模共模

思茂信息

cst CST软件 CST Studio Suite

比特币交易接近 104000 美元,分析师称「再创新高并非不可能」

PowerVerse

比特币 加密货币 分析

【华为云MySQL技术专栏】MySQL分区裁剪,提升分区表查询性能

华为云开发者联盟

:MySQL 数据库 ,华为云

合合信息上线智能文档处理领域首批MCP服务,助力企业快速搭建Agent

合合技术团队

人工智能 算法 #大数据

会议纪要自动生成软件!AI一键搞定会议纪要,办公必备!

职场工具箱

人工智能 AI 办公软件 AIGC 会议纪要

Rust多线程中安全的使用变量

量贩潮汐·WholesaleTide

rust 后端

Qwen3 系列全家桶,百度百舸一键部署

百度Geek说

鸿蒙HarmonyOS开发:零基础也能成为开发者

Lethehong

鸿蒙 HarmonyOS HarmonyOS NEXT DeepSeek v3 实践分享

Gmail Inbox发布基于深度学习的智能回复功能_语言 & 开发_张天雷_InfoQ精选文章