写点什么

Facebook 发布 TransCoder:可将代码分分钟转换为另一种编程语言

  • 2020-06-09
  • 本文字数:1658 字

    阅读完需:约 5 分钟

Facebook发布TransCoder:可将代码分分钟转换为另一种编程语言

近日,Facebook 的研究人员表示,已经开发出一种神经网络编译器,可以将代码从一种高级编程语言(如 C ++,Java 和 Python)转换为另一种。


将现有的代码库迁移到主流或更高效的语言,如 Java 或 C++,需要源语言和目标语言方面的专业知识,而且通常成本很高。例如,澳大利亚联邦银行在 5 年内花费了约 7.5 亿美元将其平台从 COBOL 转换为 Java。超编译器在理论上可以提供帮助——它们消除了从头开始重写代码的需要——但在实践中却很难建立,因为不同的语言可能有不同的语法,并依赖于不同的平台 API、标准库函数和变量类型。


为简化这一问题,Facebook 推出了TransCoder,该工具采用无监督学习,可以让代码在 C ++,Java 和 Python 之间进行转换。


论文地址:https://arxiv.org/pdf/2006.03511.pdf


TransCoder 首先使用跨语言模型预训练进行初始化,该训练将表示相同指令的代码段映射为相同的表示形式,而与编程语言无关(源代码序列的输入流被随机屏蔽,并且 TransCoder 的任务是根据上下文预测被屏蔽的部分),降噪自动编码的过程会训练系统生成有效序列,即使在输入有噪声的数据的情况下,反向编译使 TransCoder 可以生成可用于训练的并行数据。


TransCoder 的跨语言性质是由跨编程语言存在的通用标记(锚点)的数量引起的,这些标记来自诸如“ for”,“ while”,“ if”和“ try”的通用关键字、数学运算符以及出现在源代码中的英文字符串。反向编译通过将源到目标模型与并行训练的“反向”目标到源模型耦合在一起来提高系统的编译质量。目标到源模型用于将目标序列编译成源语言,产生有噪声的源序列,而源到目标模型则有助于从噪声源重构目标序列,直到两个模型收敛。


Facebook 研究人员在公共 GitHub 语料库上对 TransCoder 进行了培训,该语料库包含超过 280 万个开源存储库,目标是函数级别的编译(在编程中,函数是可重复使用的代码块,用于执行单个相关动作)。在对所有可用的源代码进行预训练后,去噪自动编码和反向翻译组件只在函数上进行训练,在组件之间交替使用大约 6000 个标记批次。


为了评估 TransCoder 的性能,研究人员从 GeeksforGeeks 中提取了 852 个 C ++,Java 和 Python 并行函数,GeeksforGeeks 是一个在线平台,可收集编码问题并以多种编程语言提供解决方案。他们使用这些公式开发了一种新的度量标准:计算精度,测试给定相同输入时,假设函数是否生成与参考相同的输出。


Facebook 方面表示,虽然 TransCoder 表现最佳的版本并没有产生很多与预期完全相同的函数,但它的编译具有很高的计算精度。研究人员将其归因于波束搜索的结合,波束搜索是一种维护一组部分解码的序列的方法,该序列会附加到序列中,然后进行评分,从而使最佳序列冒泡到顶部:


  • 从 C ++转换为 Java 时,74.8%返回了预期的输出。

  • 从 C ++转换为 Python 时,67.2%返回了预期的输出。

  • 从 Java 转换为 C ++时,91.6%返回了预期的输出。

  • 从 Python 转换为 Java 时,56.1%返回了预期的输出。

  • 从 Python 转换为 C ++时,57.8%返回了预期的输出。

  • 从 Java 转换为 Python 时,68.7%返回了预期的输出。


根据研究人员的说法,TransCoder 在实验过程中展示了对每种语言特有的语法、数据结构及其方法的理解,并且在跨编程语言的情况下正确对齐了库,同时适应了较小的修改(例如当输入已重命名)。尽管它并不完美,例如 TransCoder 在生成过程中未能考虑某些变量类型,但它的性能仍然比一些框架要优秀。


该工具的一位共同作者写道:“ TransCoder 可以轻松地推广到任何编程语言,不需要任何专业知识,并且在很大程度上优于商业解决方案。我们的研究结果表明,通过向解码器添加简单的约束以确保生成的函数在语法上是正确的,或者通过使用专用架构,可以轻松解决该模型所犯的许多错误。”


Facebook 不是唯一开发代码生成系统的组织。在今年早些时候的 Microsoft Build 大会上,OpenAI 演示了一个在 GitHub 存储库上训练的模型,该模型使用英语注释生成整个功能。两年前,莱斯大学的研究人员创建了一个名为Bayou的系统,该系统通过将公开代码背后的“意图”相关联,并自主编写软件程序。


2020-06-09 11:213038
用户头像
陈思 InfoQ编辑

发布了 576 篇内容, 共 299.7 次阅读, 收获喜欢 1306 次。

关注

评论

发布
暂无评论
发现更多内容

太厉害了!腾讯T4大牛把《数据结构与算法》讲透了,带源码笔记

冉然学Java

编程 算法 排序 java\ 数据结构与算法、

开源一夏 | 不会吧,十分钟就能上手Prometheus与Grafana监控SpringBoot项目

知识浅谈

开源 8月月更 SpringBoot实战

面试SQL语句,学会这些就够了!!!

程序员猪小哼

sql 实用SQl语句

想做好分布式架构?这个知识点一定要理解透彻

王小凡

Java 程序员 分布式 高并发

语音直播系统——做好敏感词汇屏蔽打造绿色社交环境

开源直播系统源码

软件开发 语聊房 直播系统源码 语音直播系统

并发模型和I/O模型介绍

C++后台开发

后端开发 I/O模型 C/C++后台开发 C/C++开发 并发模型

浅聊组合函数

掘金安东尼

前端 函数编程 8月月更

Python字体反爬之乐居字体反爬,一文看懂,一文学会

梦想橡皮擦

Python 爬虫 8月月更

兆骑科创创业赛事活动路演,高层次人才引进平台

兆骑科创凤阁

快速搞懂Seata分布式事务AT、TCC、SAGA、XA模式选型

知识浅谈

开源 8月月更

IDO预售DAPP系统开发(NFT挖矿)

薇電13242772558

dapp

华为研究院19级研究员几年心得,终成趣谈网络协议文档,附大牛讲解

冉然学Java

数据库 编程 微服务 网络协议 java\

这几年让你大呼惊人的AI应用,都离不开这项技术

小红书技术REDtech

人工智能 自然语言处理 nlp 自然语言 自然语言理解

《数字经济全景白皮书》银行业智能风控科技应用专题分析 发布

易观分析

金融 银行 数字经济全景白皮书

大咖说·图书分享 | Serverless工程实践:从入门到进阶

大咖说

Serverless 工程实践

一文搞懂│php 中的 DI 依赖注入

设计模式 依赖注入 8月月更 高级编程

基于深度学习的图像检索方法!

Geek_e369a5

图像搜索 图像检索

玉溪卷烟厂通过正确选择时序数据库 轻松应对超万亿行数据

TDengine

数据库 tdengine 时序数据库

Kubernetes资源编排系列之三: Kustomize篇

阿里云大数据AI技术

运维‘

中科驭数等单位牵头发布行业首部DPU评测方法技术白皮书

硬科技星球

绝对最直白的MySQL MVCC机制总结,免费拿走

知识浅谈

开源 8月月更

2022年值得尝试的7个MQTT客户端工具

EMQ映云科技

物联网 IoT mqtt 客户端 8月月更

大数据培训如何部署一个健壮的Airflow

小谷哥

国内IT市场还有发展吗?有哪些创新好用的IT运维工具可以推荐?

行云管家

云计算 多云管理 IT运维 云管理

兆骑科创双创服务平台,创业赛事活动,投融资对接平台

兆骑科创凤阁

二极管及其应用

厉昱辰

电子技术 8月月更

史上最全!47个“数字化转型”常见术语合集,看完秒懂~

优秀

数字化转型 数字化业务转型

Apache APISIX 2.15 版本发布,为插件增加更多灵活性

API7.ai 技术团队

开源 后端 API网关 APISIX 网关

浅析PM2实用入门指南

青年码农

Node pm2

开篇-开启全新的.NET现代应用开发体验

MASA技术团队

.net 云原生 后端

AI+BI+可视化,Sugar BI架构深度剖析

百度Geek说

架构 数据

Facebook发布TransCoder:可将代码分分钟转换为另一种编程语言_架构_Kyle Wiggers_InfoQ精选文章