2天时间,聊今年最热的 Agent、上下文工程、AI 产品创新等话题。2025 年最后一场~ 了解详情
写点什么

谷歌发布 TensorFlow Lite 预览版,推理速度提升 4 到 6 倍

  • 2019-01-17
  • 本文字数:2969 字

    阅读完需:约 10 分钟

谷歌发布TensorFlow Lite预览版,推理速度提升4到6倍

TensorFlow 团队近日在博客上发布了 TensorFlow Lite 开发者预览版,据介绍,新的版本可以让模型推理速度提升至原来的 4~6 倍。


以下为博客全文


由于设备的处理和能力有限,在移动设备上的计算密集型机器学习模型上运行推理,对资源的要求很高。虽然转换为定点模型是一种加速的方法,但我们的用户已经要求我们提供 GPU 支持作为加速原始浮点模型推理的选项,且不增加量化的额外复杂性和潜在的准确性损失。


我们很高兴地宣布,随着 TensorFlow Lite GPU 后端开发者预览版的发布,你将能够利用移动 GPU 来选择模型训练(如下所示),对于不支持的部分,将自动使用 CPU 进行推理。在未来的几个月里,我们将继续增加额外的操作系统,并改善 GPU 整体的后端产品。


新的后端利用了:


  • OpenGL ES 3.1 在 Android 设备上计算着色器

  • iOS 设备上的金属计算着色器


今天,我们发布了新的 GPU 后端的预编译二进制预览版,让开发人员和机器学习研究人员可以尽早尝试这种令人兴奋的新技术。我们计划在 2019 年晚些时候发布一个完整的开源版本,包含我们从开发者的经验中收集的反馈。



目前 TensorFlow Lite 仍使用 CPU 浮点推断进行人脸轮廓检测(非人脸识别)。未来我们会利用新的 GPU 后端,可以将 Pixel 3 和三星 S9 的推理速度提升 4~6 倍。

GPU 与 CPU 性能

我们已经在谷歌的产品中进行了几个月新的 GPU 后端测试,加速了计算密集型网络,为我们的用户提供了重要的用例。


对于 Pixel 3 的人像模式,Tensorflow Lite GPU 让前景-背景分割模型的速度提高了 4 倍以上,新的深度预估模型的推理速度提高了 10 倍以上,同时还对 CPU 推理浮点精度提高。在 YouTube 上的 YouTube Stories 和 Playground Stickers 中,实时视频分割模型在各种手机上的测试加速 5~10 倍。


我们发现,对于各种深度神经网络模型,新的 GPU 后端通常比浮点 CPU 速度快 2~7 倍。我们对 4 个公共模型和 2 个内部模型进行了基准测试,涵盖了开发人员和研究人员在一系列 Android 和 Apple 设备上遇到的常见用例:


公共模型:


1.MobileNet v1 (224x224)图像分类


(基于移动和嵌入式视觉应用的图像分类模型)


2.用于姿态估计的PoseNet


(图像或视频中估计人体姿势的视觉模型)


3.DeepLab分割(257x257)


(图像分割模型,将语义标签(如狗、猫、车)分配给输入图像中的每个像素)


4.MobileNet SSD对象检测


(检测带有边框的多个对象的图像分类模型)


谷歌专有用例:


1.MLKit


2.实时视频分割



表 1:在 GPU 上的平均性能提高,相比之下,在不同的 Android 和 Apple 设备上的 6 种型号的基准 CPU 性能均有提升。


在更加复杂的神经网络模型上 GPU 加速效果最显著,这些模型本身更有利于 GPU 的利用,例如密集的预测/分割或分类任务。在小型模型中,加速效果效果可能略差,但 CPU 的使用可以降低内存传输固有的延迟成本。

如何使用?

教程

最简单的入门方法是按照我们的教程使用带有 GPU 委托的 TensorFlow Lite 演示应用程序。下面简要介绍了这种方法。有关更多信息,请参阅我们的完整文档:https://www.tensorflow.org/lite/performance/gpu_advanced。

使用 Java for Android

我们已经准备了一个完整的 Android 存档(AAR),包括带有 GPU 后端的 TensorFlow Lite。编辑 gradle 文件替换当前版本,以包含这个 AAR,并将此代码片段添加到 Java 初始化代码中。


// Initialize interpreter with GPU delegate.GpuDelegate delegate = new GpuDelegate();Interpreter.Options options = (new Interpreter.Options()).addDelegate(delegate);Interpreter interpreter = new Interpreter(model, options);
// Run inference.while (true) { writeToInputTensor(inputTensor); interpreter.run(inputTensor, outputTensor); readFromOutputTensor(outputTensor);}
// Clean up.delegate.close();

复制代码

使用 C ++ for iOS

步骤 1.下载 TensorFlow Lite 的二进制版本。


步骤 2.更改代码,以便在创建模型之后调用 ModifyGraphWithDelegate()。


// Initialize interpreter with GPU delegate.std::unique_ptr<Interpreter> interpreter;InterpreterBuilder(model, op_resolver)(&interpreter);auto* delegate = NewGpuDelegate(nullptr);  // default configif (interpreter->ModifyGraphWithDelegate(delegate) != kTfLiteOk) return false;
// Run inference.while (true) { WriteToInputTensor(interpreter->typed_input_tensor<float>(0)); if (interpreter->Invoke() != kTfLiteOk) return false; ReadFromOutputTensor(interpreter->typed_output_tensor<float>(0));}
// Clean up.interpreter = nullptr;DeleteGpuDelegate(delegate);

复制代码

如何加速?

GPU 后端目前支持 select 操作(请参阅文档)。当只包含这些操作时,你的模型运行速度将最快;不支持的 GPU 操作将自动退回到 CPU 进行操作。

它是如何工作的?

深度神经网络按顺序运行数百个操作,这使得它们非常适合针对吞吐量的并行工作负载而设计的 GPU。


Objective-C++可通过调用 Interpreter::ModifyGraphWithDelegate(),或者通过 Interpreter.Options 间接调用 Interpreter 的构造函数来初始化 GPU。在初始化阶段,基于从框架接收的执行计划,构建输入神经网络的规范表示。使用此新表示,可应用一组转换规则,包括但不限于:


  • 剔除不需要的 ops

  • 将 ops 替换为性能更好的等效 ops

  • 合并 ops,以减少最终生成的着色程序的数量


基于此优化图(optimized graph),生成并编译计算着色器。我们目前在 Android 上使用 OpenGL ES 3.1 计算着色器,在 iOS 上使用 Metal 计算着色器。在创建这些计算着色器时,我们还采用了各种特定于体系结构的优化,例如:


  • 进行某些操作特殊化而不是较慢的通用实现

  • 释放寄存器压力

  • 选择最佳工作组大小

  • 安全地调整精度

  • 重新排序显式数学操作


在这些优化结束后,编译着色程序可能需要几毫秒到半秒,就像手机游戏一样。一旦着色程序编译完成,新的 GPU 推理引擎就可以开始工作了。


在推断每个输入时:


  • 如有必要,输入将移至 GPU:如果输入张量还没有存储为 GPU 内存,那么通过创建 GL 缓冲区/texture 或 mtlbuffer(同时还可能复制数据),GPU 可以访问输入张量。由于 GPU 在 4 通道数据结构中效率最高,因此通道大小不等于 4 的张量将被重新塑造成更适合 GPU 的布局。

  • 执行着色器程序:将上述着色器程序插入命令缓冲区队列中,GPU 将这些程序输出。在这一步中,我们还为中间张量管理 GPU 内存,以尽可能减少后端的内存占用。

  • 必要时将输出移动到 CPU:一旦深度神经网络完成处理,框架就会将结果从 GPU 内存复制到 CPU 内存,除非网络的输出可以直接在屏幕上呈现,不需要这样的传输。

  • 为了获得最佳体验,我们建议优化输入/输出张量副本和/或网络架构。有关此类优化的详细信息,可以在TensorFlow Lite GPU文档中找到。有关性能最佳实践,请阅读本指南

它有多大?

GPU 委托将为 Android armeabi-v7a APK 增加 270KB 的内存,为 iOS 增加 212KB 的内存。但后端是可选的,因此,如果不使用 GPU 委托,就不需要包含它。

未来的工作

这只是我们 GPU 支持工作的开始。除了社区反馈外,我们还打算进行以下改进:


  • 扩大运营范围

  • 进一步优化性能

  • 发展并最终确定 API


我们欢迎你在GitHubStackOverflow页面上留下你的想法和评论。


原文链接:


https://medium.com/tensorflow/tensorflow-lite-now-faster-with-mobile-gpus-developer-preview-e15797e6dee7


2019-01-17 14:308021
用户头像
陈思 InfoQ编辑

发布了 584 篇内容, 共 308.4 次阅读, 收获喜欢 1306 次。

关注

评论

发布
暂无评论
发现更多内容

选择低代码,帮企业数字化转型提交一份满分答卷

加入高科技仿生人

软件开发 低代码 数字化 数字转型

NLP专栏简介:数据增强、智能标注、意图识别算法|多分类算法、文本信息抽取、多模态信息抽取、可解释性分析、性能调优、模型压缩算法等

汀丶人工智能

人工智能 自然语言处理 深度学习 关系抽取 命名实体识别

上传了ipa但在苹果App Store中没有看到构建版本的问题

【论文解读】不和谐区域定位

合合技术团队

人工智能 图像识别 图像处理

智慧污水处理厂Web3D管理系统 把“污水洗白”

2D3D前端可视化开发

智慧水务 智慧污水厂 智慧污水处理 污水厂三维可视化 数字孪生污水厂

架构实战营模块 5 作业

白杨

王者荣耀商城异地多活架构设计

白杨

关于 IDP 的五大认知误解

SEAL安全

IdP 平台工程

智慧公共厕所,重构城市公共服务的新模式@光明源智慧公厕

光明源智慧厕所

智慧城市

浪潮inBuilder低代码平台分布式微服务架构事务一致性技术解析

inBuilder低代码平台

分布式事务 低代码

用户需求挖掘与分析,某新零售快消品电商系统成功交付的秘诀

L3C老司机

产品 产品设计 需求分析 产品管理 用户画像

Django笔记三之使用model对数据库进行增删改查

Hunter熊

Python django model 增删改查

阿里云可观测 2023 年 3 月产品动态

阿里巴巴云原生

阿里云 云原生 可观测

失真的概念和定义

timerring

信息论 信息论与编码

面试官:谈谈分布式一致性机制

Java永远的神

程序员 分布式 微服务 后端 架构师

在生产环境中运行 grpc 服务所面临的挑战

蓬蒿

golang gRPC

Drone CI 部署

流火

OpenTiny 的这些特色组件,很实用,但你应该没见过

Kagol

开源 前端 Vue3 组件库

AI日课@20230407:别为下一代过虑;现在多多体验产品

无人之路

ChatGPT

携多款产品亮相“深圳先进制造业集群展”,华秋积极探索发展机遇

华秋电子

华秋PCB生产工艺分享 | 第十一道之成型

华秋电子

折叠屏时代的全新故事,由华为领启

脑极体

华为

“ONE”有引力,4月21日见!

博睿数据

智能运维 博睿数据 发布会 Bonree ONE

封仲淹:OceanBase开源技术生态全景解析

OceanBase 数据库

数据库 oceanbase

IBM Semeru Runtime 17.0.6.0 在 Linux 下的安装

HoneyMoose

谷歌发布TensorFlow Lite预览版,推理速度提升4到6倍_AI&大模型_TensorFlow团队_InfoQ精选文章