写点什么

三次成功挑战目标跟踪算法极限,商汤开源 SiamRPN 系列算法

  • 2019-05-24
  • 本文字数:2988 字

    阅读完需:约 10 分钟

三次成功挑战目标跟踪算法极限,商汤开源SiamRPN系列算法

商汤科技智能视频团队首次开源其目标跟踪研究平台 PySOT。PySOT 包含了商汤科技 SiamRPN 系列算法,以及刚被 CVPR2019 收录为 Oral 的 SiamRPN++。此篇文章将独家解读目标跟踪最强算法 SiamRPN 系列。

背景

由于存在遮挡、光照变化、尺度变化等一些列问题,单目标跟踪的实际落地应用一直都存在较大的挑战。过去两年中,商汤智能视频团队在孪生网络上做了一系列工作,包括将检测引入跟踪后实现第一个高性能孪生网络跟踪算法的 SiamRPN(CVPR 18),更好地利用训练数据增强判别能力的 DaSiamRPN(ECCV 18),以及最新的解决跟踪无法利用到深网络问题的 SiamRPN++(CVPR 19)。其中 SiamRPN++在多个数据集上都完成了 10%以上的超越,并且达到了 SOTA 水平,是当之无愧的目标跟踪最强算法。


开源项目地址:https://github.com/STVIR/pysot



以上动图中,红色框是 SiamRPN++的跟踪效果,蓝色框是 ECCV 2018 上的 UPDT 的结果,可以看出 SiamRPN++的效果更佳,跟踪效果更稳定,框也更准。从这个图也可以看出跟踪的一些挑战:光照急剧变化,形状、大小变化等。

SiamRPN (CVPR18 Spotlight)

在 CVPR18 的论文中(SiamRPN),商汤智能视频团队发现孪生网络无法对跟踪目标的形状进行调节。之前的跟踪算法更多的将跟踪问题抽象成比对问题,但是跟踪问题其实和检测问题也非常类似,对目标的定位与对目标框的回归预测一样重要。


研究人员分析了以往跟踪算法的缺陷并对其进行改进:


  1. 大多数的跟踪算法把跟踪考虑成定位问题,但它和检测问题也比较类似,对目标的定位和对目标边界框的回归预测一样重要。为此,SiamRPN 将跟踪问题抽象成单样本检测问题,即需要设计一个算法,使其能够通过第一帧的信息来初始化的一个局部检测器。为此,SiamRPN 结合了跟踪中的孪生网络和检测中的区域推荐网络:孪生网络实现对跟踪目标的适应,让算法可以利用被跟踪目标的信息,完成检测器的初始化;区域推荐网络可以让算法可以对目标位置进行更精准的预测。经过两者的结合,SiamRPN 可以进行端到端的训练。

  2. 以往的滤波类的方法,没办法通过数据驱动的形式提升跟踪的性能。而 SiamRPN 可以端到端训练,所以更大规模的数据集 Youtube-BB 也被引入到了训练中,通过数据驱动的形式提升最终的性能。



结合以上两点创新,在基线算法 SiamFC 的基础上,SiamRPN 实现了五个点以上的提升(OTB100,VOT15/16/17 数据集);同时还达到了更快的速度(160fps)、也更好地实现了精度与速度的平衡。

DaSiamRPN (ECCV18)

SiamRPN 虽然取得了非常好的性能,但由于训练集问题,物体类别过少限制了跟踪的性能;同时,在之前的训练方式中,负样本只有背景信息,一定程度上也限制了网络的判别能力,网络只具备区分前景与不含语义的背景的能力。


基于这两个问题,DaSiamRPN 设计了两种数据增强方式:


  1. 孪生网络的训练只需要图像对,而并非完整的视频,所以检测图片也可以被扩展为训练数据。更准确的来说,通过对检测数据集进行数据增强,生成可用于训练的图片对。因此在 DaSiamRPN 中,COCO 和 ImageNet Det 也被引入了训练,极大地丰富了训练集中的类别信息。同时,数据量增大的本身也带来了性能上的提升。

  2. 在孪生网络的训练过程中,通过构造有语意的负样本对来增强跟踪器的判别能力,即训练过程中不再让模板和搜索区域是相同目标;而是让网络学习判别能力,去寻找搜索区域中和模版更相似的物体,而并非一个简单的有语义的物体。



经过上述的改进,网络的判别能力变得更强,检测分数也变得更有辨别力,这样就可以根据检测分数判断目标是否消失。基于此,DaSiamRPN 可以将短时跟踪拓展到长时跟踪,并且在 UAV20L 数据集上比之前最好的方法提高了 6 个点。在 ECCV18 的 VOT workshop 上面,DaSiamRPN 取得了实时比赛的冠军,相比去年的冠军有了 80%的提升。

SiamRPN++ (CVPR19 Oral)

目前,孪生网络中的核心问题在于现有的孪生网络目标跟踪算法只能用比较浅的卷积网络(如 AlexNet),无法利用现代化网络为跟踪算法提升精度,而直接引入深网络甚至会使性能大幅衰减。


为了解决深网络这个 Siamese 跟踪器的痛点,商汤智能视频团队基于之前 ECCV2018 的工作(DaSiamRPN),通过分析孪生神经网络训练过程,发现孪生网络在使用现代化深度神经网络存在位置偏见问题,而这一问题是由于卷积的 padding 会破坏严格的平移不变性。然而深网络并不能去掉 padding,为了缓解这一问题,让深网络能够在跟踪提升性能,SiamRPN++中提出在训练过程中加入位置均衡的采样策略。通过修改采样策略来缓解网络在训练过程中的存在的位置偏见问题,让深网络能够发挥出应有的效果。



通过加入这一采样策略,深层网络终于能够在跟踪任务中发挥作用,让跟踪的性能不再受制于网络的容量。同时,为了更好地发挥深层网络的性能,SiamRPN++中利用了多层融合。由于浅层特征具有更多的细节信息,而深层网络具有更多的语义信息,将多层融合起来以后,可以跟踪器兼顾细节和深层语义信息,从而进一步提升性能。


除此之外,研究人员还提出了新的连接部件,深度可分离相关层(Depthwise Correlation,后续简写为 DW)。相比于之前的升维相关层(UpChannel correlation,后续简写为 UP),DW 可以极大地简化参数量,平衡两支的参数量,同时让训练更加稳定,也能更好的收敛。



为了验证以上提出的内容,研究人员做了详细的实验。在比较常用的 VOT 和 OTB 数据集上,SiamRPN++取得了 SOTA 的结果。在 VOT18 的长时跟踪,以及最近新出的一些大规模数据集上如 LaSOT、TrackingNet、SiamRPN++也都取得了 SOTA 的结果。


传送门

目前相关代码现已上传至商汤科技开源目标跟踪研究平台 PySOT。PySOT 实现了目前 SOTA 的多个单目标跟踪算法,旨在提供高质量、高性能的视觉跟踪研究代码库,并将其灵活应用于新算法的实现和评估中。欢迎大家使用与交流!


PySOT 开源项目


https://github.com/STVIR/pysot


SiamRPN


http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_High_Performance_Visual_CVPR_2018_paper.pdf


DaSiamRPN


http://openaccess.thecvf.com/content_ECCV_2018/papers/Zheng_Zhu_Distractor-aware_Siamese_Networks_ECCV_2018_paper.pdf


SiamRPN++


https://arxiv.org/abs/1812.11703

参考文献

  1. Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing, Junjie Yan, “SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks” (Oral) in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019

  2. Zheng Zhu, Qiang Wang, Bo Li, Wei Wu, Junjie Yan, “Distractor-aware Siamese Networks for Visual Object Tracking” European Conference on Computer Vision (ECCV) 2018

  3. Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, Xiaolin Hu, “High Performance Visual Tracking with Siamese Region Proposal Network” (Spotlight) in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018

  4. Luca BertinettoJack ValmadreJoão F. HenriquesAndrea VedaldiPhilip H. S. Torr “Fully-Convolutional Siamese Networks for Object Tracking” in ECCV Workshop 2016

  5. Goutam Bhat, Joakim Johnander, Martin Danelljan, Fahad Shahbaz Khan, Michael Felsberg.“Unveiling the Power of Deep Tracking” European Conference on Computer Vision (ECCV) 2018


2019-05-24 17:348793

评论

发布
暂无评论
发现更多内容

Git操作不规范,战友提刀来相见!

树上有只程序猿

京东统一头尾管理系统探索实践 | 京东云技术团队

京东科技开发者

管理系统 企业号 7 月 PK 榜 头尾管理

活动预告|7月29日 Streaming Lakehouse Meetup·北京站

Apache Flink

大数据 flink 实时计算 信息推送

简单三步完成离线升级TIDB v7.1(服务器无互联网环境)

TiDB 社区干货传送门

版本升级 7.x 实践

几天不写React,已经看不懂语法了

伤感汤姆布利柏

数智化赋能企业,开启全新商业模式

用友BIP

国产替代

华为开发者大会:软件开发小白的华为云云上初体验

华为云PaaS服务小智

云计算 软件开发 华为云 华为开发者大会2023

阿里云瑶池数据库出席2023可信数据库发展大会,PolarDB荣获多项评测证书

科技热闻

TiDB v7.1.0 资源管控功能是如何降低运维难度和成本-实现集群资源最大化?

TiDB 社区干货传送门

实践案例 版本测评 性能测评 应用适配 7.x 实践

深度剖析之由浅入深揭秘JavaScript类型转换(最全总结篇)

沉浸式趣谈

JavaScript 类型转换 隐式转换 类型 强制类型转换

业务创新的利器:探索Flutter与小程序容器的融合应用

FinClip

万字好文:大报文问题实战 | 京东物流技术团队

京东科技开发者

MySQL 网关 报文 企业号 7 月 PK 榜 大报文

快速提效,便捷易用 | 嘉为蓝鲸数字化运营中心全方位体验升级

嘉为蓝鲸

运维 IT weops

新兴技术与禅坐 | 聊聊经验 | 社区征文

写程序的小王叔叔

经验分享 年中技术盘点

IT运维的福音!WeOps综合服务让运维更简单

嘉为蓝鲸

运维 IT weops

gRPC 接口调试利器,让你成为高效开发者

Apifox

程序员 gRPC RPC 开发 RPC 协议实现原理

亿级日活业务稳如磐石 华为云发布性能测试服务CodeArts PerfTest

华为云PaaS服务小智

云计算 软件开发 性能测试 华为云

科兴未来|第二届T-MAX“科创太仓”国际创新创业--先进材料专场赛

科兴未来News

加速布局,用友为国产化替代保驾护航!

用友BIP

国产替代

一份保姆级的Stable Diffusion部署教程,开启你的炼丹之路 | 京东云技术团队

京东科技开发者

人工智能 AI绘画 Stable Diffusion 企业号 7 月 PK 榜

这10个强大的CSS属性,每个前端都要懂

伤感汤姆布利柏

Kurator v0.4.0版本更新4大内容,满足多云环境的复杂需求

华为云开发者联盟

云原生 后端 华为云 华为云开发者联盟 企业号 7 月 PK 榜

飞桨和硬件伙伴们在WAIC 2023!

飞桨PaddlePaddle

人工智能 百度 paddle 飞桨 百度飞桨

新能力提升全面预算管理效率和效力

用友BIP

全面预算

用友iuap亮相全球数字经济大会助力企业升级数智化底座

用友BIP

数智底座

科研类项目核算的“法、术、器”(一)

用友BIP

项目云

TiKV集群断电(灾难)恢复过程记录

TiDB 社区干货传送门

6.x 实践

手把手教学构建农业知识图谱:农业领域的信息检索+智能问答,命名实体识别,关系抽取,实体关系查询

汀丶人工智能

人工智能 深度学习 nlp 知识图谱 智能问答

基于知识图谱的《红楼梦》人物关系可视化及问答系统(含码源):命名实体识别、关系识别、LTP简单教学

汀丶人工智能

人工智能 深度学习 nlp 知识图谱 智能问答

《2022-2023年中国大数据市场研究年度报告》正式发布,腾讯云位列领导者行列

极客天地

数据库运维实操优质文章分享(含Oracle、MySQL等) | 2023年6月刊

墨天轮

MySQL 数据库 oracle postgresql 国产数据库

三次成功挑战目标跟踪算法极限,商汤开源SiamRPN系列算法_AI&大模型_商汤科技智能视频团队_InfoQ精选文章