写点什么

ACM KDD 2023:GPT-4、ChatGLM2、Llama2、PaLM2 在关心什么?

蛋酱,杜伟,泽南

  • 2023-08-11
    北京
  • 本文字数:2929 字

    阅读完需:约 10 分钟

ACM KDD 2023:GPT-4、ChatGLM2、Llama2、PaLM2在关心什么?

近日,数据挖掘顶会 ACM KDD 2023 在美国长滩开幕。在大模型开放日上,Open AI、Meta、智谱 AI、Google DeepMind、Microsoft、Intel 等公司研究学者展开深度交流。微软首席科学家 & 技术院士 Jaime Teevan、OpenAI ChatGPT 团队成员 Jason Wei、智谱 AI CEO 张鹏、谷歌 DeepMind 首席科学家/研究主管 Denny Zhou,以及 Meta FAIR 研究工程师 Vedanuj Goswami 就大模型赋能未来工作、语言模型推理能力、Llama 2、GLM-130B 和 ChatGLM、大模型范式与挑战等主题进行了分享。

OpenAI Jason Wei:大语言模型的复兴

 

Jason Wei 是 OpenAI ChatGPT 研发团队成员之一。此前他在谷歌大脑团队担任高级研究科学家,期间致力于推广思维链提示,共同领导了指令调优前期工作,并撰写关于大语言模型涌现的工作。

 

Jason 在分享中提到,大语言模型的三个主要特征,分别是缩放法则、涌现能力和推理能力,并探讨了这些特征如何影响自己的 AI 研究领域。

 

 

Jason 还介绍了他和其他人在 LLM 推理能力上所做的研究工作:

  • 第一,思维链(Chain-of-Thought)。如果你用一个想法来提示 LLM,它给出的回复质量就会飞跃。

  • 第二,自我一致性(Self-Consistency)。对多次生成进行采样调查,然后选择最常见的答案。自我一致性改善了语言模型中的思维链推理。

  • 第三,从最少到最多的提示(Least-to-Most Prompting),这要求 LLM 将问题分解成不同的任务,并从易到难进行排序。


智谱 AI 张鹏 :从 GLM-130B 到 ChatGLM

 

作为智谱 AI(Zhipu AI)的 CEO,张鹏带领团队成功开发了 1300 亿参数的双语(中英文)大语言模型 GLM-130B。自 2022 年 8 月起,该模型已开源,在准确性和鲁棒性方面可媲美 GPT-3 davinci。

 

2023 年 3 月 14 日,基于 GLM-130B,智谱 AI 正式发布了 ChatGLM,一款类 ChatGPT 的对话机器人产品。此外,其开源、紧凑的版本 ChatGLM-6B 与 ChatGLM2-6B 全球下载量超过 5,000,000 次,连续 28 天位居 Hugging Face Trending 榜首,并在 GitHub 上获得超过 4.4 万颗星标。

 

最近,智谱 AI 还把 ChatGLM 升级到 ChatGLM2,推出了多个参数尺寸,大幅提升了能力,基于 ChatGLM2-6B 的代码生成模型,智谱 AI 还更新了代码生成工具 CodeGeeX2。

 

张鹏介绍了智谱 AI 自研的 GLM 框架,GLM 的预训练框架是一种自回归填空的方法,集成了 GPT 和 BERT 这两种预训练框架的优势,既能够实现单项注意力的计算,做序列的生成,也可以做到双向注意力的计算,做回归的模型。



在 GLM 基础上,2022 年 8 月,智谱推出拥有 1300 亿参数的中英双语稠密模型 GLM-130B。得益于新的模型架构,GLM 在许多具有百万参数甚至更少训练步骤的基准测试中,能够在自然语言理解方面实现比 BERT 和 T5 更好的性能。训练一个 1000 亿规模的大型语言模型并非易事,智谱团队解决了许多工程问题和算法上的挑战,包括频繁且随机的硬件故障、训练稳定性等问题,相关细节都发表在 ICLR 2023 的论文中。

微软 Jaime Teevan:LLM 如何塑造未来的工作

 

Jaime 是微软首席科学家和技术院士,负责公司核心产品中的驱动技术创新。她提倡人们应找到更聪明的方式来充分利用好时间,领导微软的未来工作倡议,探索 AI 和混合办公等如何改变人们完成事情的方式。此前她曾担任微软 CEO 萨提亚·纳德拉的技术顾问,并领导了微软研究院的生产力团队。

 

此外,Jaime 是 ACM Fellow 以及 ACM SIGIR and SIGCHI Academies 的会员。她还曾荣获 TR35、BECA 和 Karen Sparck Jones 奖。她本科毕业于耶鲁大学,并获得了 MIT 人工智能博士学位。她也是华盛顿大学的客座教授。

 

Jaime 认为,伴随 LLM 的崛起,未来的工作方式正在发生迅速变化,知识越来越多地蕴含在对话而非文档中。Jaime 探讨了 LLM 如何通过生成符合人们语境和意图的自然语言建议和反馈,以提高人们的工作效率和创造力。要有效地做到这一点,LLM 需要能够利用各种来源的相关内容作为其响应的基础。人们还需要学习新的对话模式,以充分发挥大模型的价值,因为在人际交往中行之有效的模式对 LLM 来说可能并不是最佳的。

 

此外,Jaime 讨论了提示工程在生产环境中的重要性,并强调能够识别和推荐对话模板的价值。通过对这些研究课题的深入研究,推荐系统界有机会创造一个全新的、更美好的工作未来。

谷歌 DeepMind Denny Zhou:教语言模型学推理

 

Denny Zhou 是 Google DeepMind 的首席科学家/研究主管,他是推理团队的创立者和现任负责人。主要研究兴趣在于构建和教导大语言模型实现类人的推理能力。他领导的团队已经开发了思维链提示、自洽性解码、最少到最多提示、指令调优(FLAN2)、LLM 自我调试等大语言模型的各种涌现属性。Denny Zhou 曾获得 2022 年谷歌研究技术影响力奖(Google Research Tech Impact Award)。

 

Denny Zhou 认为,过去数十年,机器学习社区已经开发了大量用来增强学习效率的数据驱动方法,比如半监督学习、元学习、主动学习、迁移学习等。然而,所有这些方法已被证明对于现实世界的 NLP 任务并不是特别有效,由此暴露了机器学习的一大缺陷 ——缺乏推理。人们往往可以从很少的示例中学习,这就归功于推理能力而不是依赖数据统计。

 

Denny Zhou 表示,谷歌 DeepMind 引领的 LLM 推理工作开发的方法极大缩小了人类智能与机器学习之间的差距,在仅要求很少的注释示例且不需要训练的情况下也能实现新的 SOTA。这些工作,谷歌 CEO 桑达尔·皮查伊在 2021 年的 Google I/O 大会上进行过重点展示。

Meta FAIR  Vedanuj Goswami:Llama 2 开放基础和微调聊天模型

 

上个月,最强的开源大模型 Llama 2 惊艳发布,一夜之间改变了大模型竞争格局。发布之后, Llama 2 模型迅速成为了社区最广泛使用和下载的开源模型之一。Vedanuj 曾经参与训练 Llama 2 系列模型,目前在 Meta AI 的 LLM 研究团队担任研究工程师,重点研究 LLM 预训练和缩放技巧。

 

Vedanuj 还曾是「No Language Left Behind」(不落下任何语言)和「Universal Speech Translation for Unwritten Languages」(非书面语的通用语音翻译)等翻译项目的研究负责人,并在 FAIR 从事过多模态研究,领导 FLAVA 和 MMF 等著名项目。

 

Vedanuj 表示,7 月 18 日刚刚发布的 Llama 2 模型系列包含 70 亿、130 亿和 700 亿三种参数变体,因为开源且可以直接商用化,吸引了整个业界的关注。

 

在预训练层面,Llama 2 模型系列以 Llama 1 论文中描述的预训练方法为基础,使用了优化的自回归 transformer,并做了一些改变以提升性能。相比于 Llama 1,Llama 2 的训练数据多了 40%,上下文长度也翻倍,并采用了分组查询注意力机制。具体来说,Llama 2 预训练模型是在 2 万亿的 token 上训练的,精调 Chat 模型是在 100 万人类标记数据上训练的。



在训练硬件方面,Meta 在其研究超级集群(Research Super Cluster, RSC)以及内部生产集群上对模型进行了预训练。两个集群均使用了 NVIDIA A100。在 Meta 的评估中,多项测评结果显示,Llama 2 在包括推理、编码、精通性和知识测试等许多外部基准测试中都优于其他开源语言模型。

 

当然,对于今天的大模型来说,「安全」是一个重要性不亚于「性能」的指标。在 Llama 2 的研发过程中,Meta 使用了三个常用基准评估其安全性:

 

  • 真实性,指语言模型是否会产生错误信息,采用 TruthfulQA 基准;

  • 毒性,指语言模型是否会产生「有毒」、粗鲁、有害的内容,采用 ToxiGen 基准;

  • 偏见,指语言模型是否会产生存在偏见的内容,采用 BOLD 基准。

2023-08-11 15:194953

评论

发布
暂无评论
发现更多内容

requestVideoFrameCallback() 简单实例

devpoint

3D 视频处理 7月月更

上海交大牵手淘宝成立媒体计算实验室:推动视频超分等关键技术发展

阿里巴巴大淘宝技术

音视频 音视频技术

一文读懂Okaleido Tiger近期动态,挖掘背后价值与潜力

小哈区块

融合数据库生态:利用 EventBridge 构建 CDC 应用

阿里巴巴云原生

阿里云 云原生 事件总线 CDC EventBridge

leetcode 763. Partition Labels 划分字母区间(中等)

okokabcd

LeetCode 数据结构与算法 贪心算法

怎样搭建企业内部维基百科

Baklib

一文读懂Okaleido Tiger近期动态,挖掘背后价值与潜力

西柚子

Baklib|为什么说企业需要重视客户体验?

Baklib

基于对象的实时空间音频渲染丨Dev for Dev 专栏

声网

Dev for Dev 空间音频 实时互动

React Refs 笔记📝

程序员海军

React 7月月更

PlatoFarm社区生态福音,用户可借助Elephant Swap获得溢价收益

股市老人

基于java springboot失物招领微信小程序源码

清风

计算机毕业设计 失物招领小程序

openEuler Embedded SIG | 分布式软总线

openEuler

开源 分布式 操作系统 嵌入式 openEuler

研发效能的道法术器

laofo

DevOps cicd 研发效能 基础设施 持续交付

PLATO上线LAAS协议Elephant Swap,用户可借此获得溢价收益

鳄鱼视界

【周周有奖】云原生编程挑战赛“边缘容器”赛道邀你来战!

阿里巴巴云原生

阿里云 边缘容器 云原生编程挑战赛

第二轮1000个Okaleido Tiger,再次登录Binance NFT 1小时售罄

BlockChain先知

DDD领域驱动设计如何进行工程化落地

慕枫技术笔记

DDD 架构设计 7月月更

Prometheus 的 API 稳定性保障

耳东@Erdong

Prometheus API 7月月更

SpringBoot基于异常处理exception发送邮件消息提醒

宁在春

springboot 7月月更

被忽视的智能电视小程序领域

Geek_99967b

物联网

快手重点整治搬运、洗稿等方式的养号行为,自媒体平台如何净化内容生态

石头IT视角

一文读懂Okaleido Tiger近期动态,挖掘背后价值与潜力

股市老人

什么是低代码?哪些平台适合业务人员?用来开发系统靠不靠谱?

优秀

低代码 低代码平台

编码用这16个命名规则能让你少写一半以上的注释!

岛上码农

flutter ios 前端 安卓开发 签约计划第三季

学习Typescript(二)

bo

前端 ts 7月月更

英特尔数据中心GPU正式发货,以开放灵活提供强劲算力

科技新消息

深开鸿:万物智联的大江上,升起一轮开源鸿蒙月

脑极体

智能电视与小程序的结合

Geek_99967b

物联网

Bootstrap Affix和过渡效果插件的详细使用【前端Bootstrap框架】

恒山其若陋兮

7月月更

ACM KDD 2023:GPT-4、ChatGLM2、Llama2、PaLM2在关心什么?_生成式 AI_InfoQ精选文章