写点什么

鸟枪换炮,如何在推荐中发挥 AI Lab 开源中文词向量的威力?

  • 2019-08-22
  • 本文字数:1888 字

    阅读完需:约 6 分钟

鸟枪换炮,如何在推荐中发挥AI Lab开源中文词向量的威力?

本文来自“深度推荐系统”专栏,这个系列将介绍在深度学习的强力驱动下,给推荐系统工业界所带来的最前沿的变化。本文则结合作者在工作中的经验总结,着重于介绍在推荐系统中如何使用腾讯 AI Lab 开源的中文词向量。


近年来,深度学习技术在自然语言处理领域中得到了广泛应用。用深度学习技术来处理自然语言文本,离不开文本的向量化,即把一段文本转化成一个 n 维的向量。在当前“万物皆可 embedding”的思想领导下,词向量既是 NLP 领域中一个非常基础的工具,也是推荐、广告等业务场景中用于召回以及排序等阶段的简单且实用的核武器,主要用于进行语义相似度度量等。


词向量的核心是 word2vec[1],相应原理介绍不是本文介绍的重点。常用的训练工具有 gensim,fasttext 等,一般的训练步骤包括:收集语料 --> 文本过滤 --> 分词 --> 去除停用词 --> 训练模型。


目前,针对英语环境,工业界和学术界已发布了一些高质量的词向量数据,并得到了广泛的使用和验证。其中较为知名的有谷歌公司基于 word2vec 算法[1]、斯坦福大学基于 GloVe 算法[2]、Facebook 基于 fastText 项目[3]发布的数据等。然而,目前公开可下载的中文词向量数据还比较少,并且数据的词汇覆盖率有所不足,

腾讯 AI Lab 开源中文词向量

腾讯 AI Lab 采用自研的 Directional Skip-Gram (DSG)算法 [4] 作为词向量的训练算法。DSG 算法基于基本的 Skip-Gram,在文本窗口中词对共现关系的基础上,额外考虑了词对的相对位置,以提高词向量语义表示的准确性。


数据简介:mp.weixin.qq.com/s/2Sto


数据下载地址:ai.tencent.com/ailab/nl


索引词库大小:800w;词向量维度:200

如何在推荐中使用开源词向量

在推荐系统的基于内容召回策略中,一般需要根据用户已经点击过的文章所包含的 tag 词或者主题,为用户推荐与点击历史中最相似的文章。其中有一种做法就是从文章中抽取 T 个 tag 相应的词向量来表示这篇文章的文章向量(如 vec_doc = w1 * vec_t1 + w2 * vec_t2 + …,这里 w1,w2 是文章中 tag 词相应的权重);然后,根据用户的点击历史计算文章向量的相似度,取 topk 个返回。下面主要实际业务场景中简单的使用步骤:


  • 向量裁剪:从腾讯 AI Lab 官网下载下来的原始词向量库比较大,16G 并且包含大量的停用词。这里可首先计算自己业务场景的 tag 库与这份开源中文自己向量的 tag 集合之间的交集得到裁剪后的向量库。

  • 加载词向量:可以使用 gensim 进行加载。可以参考 gensim 使用手册:radimrehurek.com/gensim


from gensim.models.word2vec import KeyedVectorswv_from_text = KeyedVectors.load_word2vec_format('Tencent_AILab_ChineseEmbedding.txt', binary=False)
复制代码


  • 部分测试数据


model=wv_from_text.wv
print(model.most_similar("如懿传"))[('海上牧云记', 0.8060665130615234), ('孤芳不自赏', 0.7940512299537659), ('醉玲珑', 0.7932543754577637), ('凰权', 0.7888569831848145), ('古装剧', 0.7873178720474243), ('琅琊榜2', 0.7863854765892029), ('延禧攻略', 0.7858327031135559), ('那年花开月正圆', 0.7804251909255981), ('大剧', 0.7796347737312317), ('凤囚凰', 0.7741515040397644)]
print(model.similarity("郭靖","黄蓉"))0.9186713635202067
print(model.n_similarity(["中国","北京"],["俄罗斯","莫斯科"]))0.6441469472853117
print(model.doesnt_match(["洪七公","王重阳","郭靖","黄药师"]))王重阳
复制代码

工业实际应用注意事项

实际使用中我们发现业务场景的 tag 覆盖率与文章覆盖率都有极大比例的提升。同时也带来了业务 CTR 的明显提升。


  • 总体老说腾讯 AI Lab 开源的这份中文词向量的覆盖度比较高,精度也比较高。但是词向量里含有大量停用词,导致文件比较大加载速度较慢(数分钟),而且内存消耗较大,实际使用时根据场景需要裁剪以节省性能;

  • 根据不同领域的情况,有可能某些特定垂直领域的词语之间的相关性计算不是特别准,需要根据业务场景需要加入相应的语料进行增量训练后再使用;

  • 另外,随着时间的推移会不断出现新词,物名,人名等,就需要重新训练模型。如果后期 AI Lab 不再更新维护这份词向量的话,则需要自己进行维护迭代升级。

参考文献

  1. Distributed Representations of Words and Phrases and their Compositionality

  2. GloVe: Global Vectors for Word Representation

  3. Enriching Word Vectors with Subword Information

  4. Yan Song, Shuming Shi, Jing Li, and Haisong Zhang. Directional Skip-Gram: Explicitly Distinguishing Left and Right Context for Word Embeddings. NAACL 2018


本文授权转载自知乎专栏“深度推荐系统”。原文链接:https://zhuanlan.zhihu.com/p/64385839


2019-08-22 08:059385

评论

发布
暂无评论
发现更多内容

Springboot actuator不可不注意的安全问题-可越权-可脱库

果果果

安全 springboot

促成“零碳”社会的全面实现,华为云让技术更有温度

xiaotan

华为云

腾讯云大神亲码“redis深度笔记”,字字珠玑,全是精华

Java 程序员 架构 面试

如何优化你的HTTPS?

运维研习社

https HTTP2.0 5月日更

并发王者课-青铜8:分工协作-从本质认知线程的状态和动作方法

MetaThoughts

Java 多线程 并发 并发王者课

第五课作业

杰语

持续测试 | DevOps 时代的高效测试之钥

CODING DevOps

DevOps 持续测试 迭代式测试

新生代小鲜肉之代码生成器

蛋先生DX

node.js 效率工具 自动化 生成代码

Serverless Devs 的官网是如何通过 Serverless Devs 部署的

阿里巴巴云原生

Serverless 开发者 运维 云原生 存储

dubbo-go v3 版本 go module 踩坑记

阿里巴巴云原生

容器 开发者 云原生 中间件 dubbogo

“四大模型”革新NLP技术应用,揭秘百度文心ERNIE最新开源预训练模型

百度大脑

开源 nlp

「信创」风口,国产数据库的新机遇

BinTools图尔兹

数据库 数据安全 dba 数据库管理 tdsql

Geek 青年说北京沙龙分享

看山

Geek青年说

日常Bug排查-系统失去响应-Redis使用不当

无毁的湖光

Java redis

Java程序员简历这么写,还过不了筛选算我输!

Java架构师迁哥

五分钟开发属于你自己的代码生成器

蛋先生DX

node.js 效率工具 生成代码 JavaScrip

简单又灵活的权限设计?

蛋先生DX

数据库设计 权限系统 权限 权限架构 rbac

思想与落地

型火🔥

架构 分布式 微服务 哲学

千亿级数据迁移mongodb成本节省及性能优化实践

gmoy-tencent

MySQL 数据库 mongodb 架构 分布式数据库mongodb

非官方不权威Java面试宝典

北游学Java

Java 面试

阿里云 AI 编辑部获 CCBN 创新奖,揭秘传媒行业解决方案背后的黑科技

阿里云CloudImagine

阿里云 媒体 CCBN

不愧是Alibaba技术官,Kafka的精髓全写这本“限量笔记”里,服了

Java 大数据 架构 面试

.Net Core Configuration Etcd数据源

yi念之间

etcd .net core

刚刚接触视频剪辑,怎么快速剪视频?

奈奈的杂社

暑期 2021 | Serverless Devs 最全项目申请攻略来啦!

阿里巴巴云原生

开源 Serverless 开发者 云原生 活动

个推“D-M-P”三步走, 打造每日治数平台,助力行业数字化升级

个推

大数据 数据中台 数据治理 数据智能

从零开始学习ThingJS之创建/销毁物体

ThingJS数字孪生引擎

JavaScript 3D 3D可视化 数字孪生

阿里云携手 VMware 共建云原生 IoT 生态,聚开源社区合力打造领域标准

阿里巴巴云原生

阿里云 容器 开发者 云原生 k8s

公安重点人员情报研判分析系统,可视化大屏系统

量化马丁策略系统搭建,网格策略交易系统

怎样节省 2/3 的 GPU?爱奇艺 vGPU 的探索与实践

爱奇艺技术产品团队

深度学习 gpu

鸟枪换炮,如何在推荐中发挥AI Lab开源中文词向量的威力?_AI&大模型_深度传送门_InfoQ精选文章