写点什么

鸟枪换炮,如何在推荐中发挥 AI Lab 开源中文词向量的威力?

  • 2019-08-22
  • 本文字数:1888 字

    阅读完需:约 6 分钟

鸟枪换炮,如何在推荐中发挥AI Lab开源中文词向量的威力?

本文来自“深度推荐系统”专栏,这个系列将介绍在深度学习的强力驱动下,给推荐系统工业界所带来的最前沿的变化。本文则结合作者在工作中的经验总结,着重于介绍在推荐系统中如何使用腾讯 AI Lab 开源的中文词向量。


近年来,深度学习技术在自然语言处理领域中得到了广泛应用。用深度学习技术来处理自然语言文本,离不开文本的向量化,即把一段文本转化成一个 n 维的向量。在当前“万物皆可 embedding”的思想领导下,词向量既是 NLP 领域中一个非常基础的工具,也是推荐、广告等业务场景中用于召回以及排序等阶段的简单且实用的核武器,主要用于进行语义相似度度量等。


词向量的核心是 word2vec[1],相应原理介绍不是本文介绍的重点。常用的训练工具有 gensim,fasttext 等,一般的训练步骤包括:收集语料 --> 文本过滤 --> 分词 --> 去除停用词 --> 训练模型。


目前,针对英语环境,工业界和学术界已发布了一些高质量的词向量数据,并得到了广泛的使用和验证。其中较为知名的有谷歌公司基于 word2vec 算法[1]、斯坦福大学基于 GloVe 算法[2]、Facebook 基于 fastText 项目[3]发布的数据等。然而,目前公开可下载的中文词向量数据还比较少,并且数据的词汇覆盖率有所不足,

腾讯 AI Lab 开源中文词向量

腾讯 AI Lab 采用自研的 Directional Skip-Gram (DSG)算法 [4] 作为词向量的训练算法。DSG 算法基于基本的 Skip-Gram,在文本窗口中词对共现关系的基础上,额外考虑了词对的相对位置,以提高词向量语义表示的准确性。


数据简介:mp.weixin.qq.com/s/2Sto


数据下载地址:ai.tencent.com/ailab/nl


索引词库大小:800w;词向量维度:200

如何在推荐中使用开源词向量

在推荐系统的基于内容召回策略中,一般需要根据用户已经点击过的文章所包含的 tag 词或者主题,为用户推荐与点击历史中最相似的文章。其中有一种做法就是从文章中抽取 T 个 tag 相应的词向量来表示这篇文章的文章向量(如 vec_doc = w1 * vec_t1 + w2 * vec_t2 + …,这里 w1,w2 是文章中 tag 词相应的权重);然后,根据用户的点击历史计算文章向量的相似度,取 topk 个返回。下面主要实际业务场景中简单的使用步骤:


  • 向量裁剪:从腾讯 AI Lab 官网下载下来的原始词向量库比较大,16G 并且包含大量的停用词。这里可首先计算自己业务场景的 tag 库与这份开源中文自己向量的 tag 集合之间的交集得到裁剪后的向量库。

  • 加载词向量:可以使用 gensim 进行加载。可以参考 gensim 使用手册:radimrehurek.com/gensim


from gensim.models.word2vec import KeyedVectorswv_from_text = KeyedVectors.load_word2vec_format('Tencent_AILab_ChineseEmbedding.txt', binary=False)
复制代码


  • 部分测试数据


model=wv_from_text.wv
print(model.most_similar("如懿传"))[('海上牧云记', 0.8060665130615234), ('孤芳不自赏', 0.7940512299537659), ('醉玲珑', 0.7932543754577637), ('凰权', 0.7888569831848145), ('古装剧', 0.7873178720474243), ('琅琊榜2', 0.7863854765892029), ('延禧攻略', 0.7858327031135559), ('那年花开月正圆', 0.7804251909255981), ('大剧', 0.7796347737312317), ('凤囚凰', 0.7741515040397644)]
print(model.similarity("郭靖","黄蓉"))0.9186713635202067
print(model.n_similarity(["中国","北京"],["俄罗斯","莫斯科"]))0.6441469472853117
print(model.doesnt_match(["洪七公","王重阳","郭靖","黄药师"]))王重阳
复制代码

工业实际应用注意事项

实际使用中我们发现业务场景的 tag 覆盖率与文章覆盖率都有极大比例的提升。同时也带来了业务 CTR 的明显提升。


  • 总体老说腾讯 AI Lab 开源的这份中文词向量的覆盖度比较高,精度也比较高。但是词向量里含有大量停用词,导致文件比较大加载速度较慢(数分钟),而且内存消耗较大,实际使用时根据场景需要裁剪以节省性能;

  • 根据不同领域的情况,有可能某些特定垂直领域的词语之间的相关性计算不是特别准,需要根据业务场景需要加入相应的语料进行增量训练后再使用;

  • 另外,随着时间的推移会不断出现新词,物名,人名等,就需要重新训练模型。如果后期 AI Lab 不再更新维护这份词向量的话,则需要自己进行维护迭代升级。

参考文献

  1. Distributed Representations of Words and Phrases and their Compositionality

  2. GloVe: Global Vectors for Word Representation

  3. Enriching Word Vectors with Subword Information

  4. Yan Song, Shuming Shi, Jing Li, and Haisong Zhang. Directional Skip-Gram: Explicitly Distinguishing Left and Right Context for Word Embeddings. NAACL 2018


本文授权转载自知乎专栏“深度推荐系统”。原文链接:https://zhuanlan.zhihu.com/p/64385839


2019-08-22 08:059148

评论

发布
暂无评论
发现更多内容

数据开发也能双轮驱动?

乌龟哥哥

10月月更

CentOS 上安装 Sonatype Nexus 仓库

HoneyMoose

CentOS部署Harbor镜像仓库

程序员欣宸

Docker 10月月更 habor

Qt|模态窗口如何实现进入页面等待加载数据效果

中国好公民st

c++ qt 10月月更

SAP | 内部表的表类型

暮春零贰

SAP 10月月更 内部表

“程”风破浪的开发者|如何更好的学习专业知识

闫同学

学习方法 10月月更 “程”风破浪的开发者

GaussDB(DWS)如何实现实时,批量和交付式查询一站式开发

乌龟哥哥

10月月更

数据湖(六):Hudi与Flink整合

Lansonli

10月月更 Hudi与Flink整合

Vue中的diff算法深度解析

yyds2026

Vue

加密标准中DES与AES到底是什么?两者有啥区别?

wljslmz

信息安全 加密 AES 10月月更 DES

【愚公系列】2022年10月 Go教学课程 035-接口和继承和转换与空接口

愚公搬代码

10月月更

IP报文在阿里云上的神奇之旅:同地域内云上通信

阿里技术

通信 IP 路由

golang中的切片

六月的

Go slice

Fabric8 Docker Maven Plugin 如何让部署的时候执行 Docker 打包推送

HoneyMoose

在线问题反馈模块实战(九)​:实现图片上传功能(下)

bug菌

springboot 项目实战 10月月更

【设计模式】Java 语言不同的编程范式-第1章

跟着飞哥学编程

设计模式 编程范式 java 编程 10月月更

React源码中的dom-diff

夏天的味道123

React

【一Go到底】第二十一天---defer

指剑

Go golang 10月月更

el-table表格还可以这么玩

江拥羡橙

Vue 3 Element UI 10月月更

Sonatype Nexus 管理员初始密码

HoneyMoose

“程”风破浪的开发者|慢慢踏上算法学习之旅

六月暴雪飞梨花

学习方法 算法 10月月更 “程”风破浪的开发者

“程”风破浪的开发者|镜像仓库迁移的方法

琦彦

学习方法 Harbor 10月月更 “程”风破浪的开发者

Webpack中的高级特性

Geek_02d948

webpack

微信小程序云开发收费调整,大家怎么看?

江拥羡橙

微信小程序 云开发 10月月更

Maven docker-maven-plugin 插件 Push 413 错误

HoneyMoose

在线问题反馈模块实战(七):安装部署swagger2

bug菌

springboot 项目实战 10月月更

PHP出发(php+apache+MySQL)

江拥羡橙

php MySQL apache 社区 10月月更

在线问题反馈模块实战(八)​:实现图片上传功能(上)

bug菌

springboot 项目实战 10月月更

Vue虚拟dom是如何被创建的

yyds2026

Vue

鸟枪换炮,如何在推荐中发挥AI Lab开源中文词向量的威力?_AI&大模型_深度传送门_InfoQ精选文章