写点什么

多模块进行时: 同时使用 RedisGraph 和 RediSearch 模块

  • 2020-03-01
  • 本文字数:2713 字

    阅读完需:约 9 分钟

多模块进行时:同时使用 RedisGraph 和 RediSearch 模块

在 2019 年的 RedisConf 会议上,我演示了一个在 RedisGraph 节点上进行全文 RediSearch 的解决方案。当时讲的有点模糊,但现在,我意识到我们应该解释一下我们是如何做到这一点并发布源代码。



在这个演示中我展示了一个小界面,它支持搜索动物并通过生物分类系统(界、门、类、目等)查看它们之间的关系。全文部分基于维基百科的第一段英文。例如,搜索“宠物猫”和“蓝鲸”,会发现他们都是哺乳动物,而如果搜索“宠物猫”和“雪豹”,则会发现他们都属于同一个科:猫科。


这个演示项目出乎意料地简单,但我应该指出 RediSearch 和 RedisGraph 之间的集成仍处于早期阶段,在编写本文时还没有准备好应用于生产环境。所以,我建议您在了解 RediSearch 和 RedisGraph 的集成将在未来几个月逐渐成熟的前提下,确定此方法是否能够满足您的需求。


让我们再讨论一下如何从源码构建。要完成的第一件事是基于代码库中正确的分支构建 RediSearch 和 RedisGraph。RediSearch 使用的是当前的主分支,而 RedisGraph 是 redisconf 分支。如果您想根据自己的需要构建解决方案,可以从源代码构建这两个模块。RedisGraph 和 RediSearch 的网站上都有关于如何构建的详细说明,这并不困难,只是需要一点时间。


配置模块的位置在 redis.conf 文件中,为了确保在 RediSearch 之前加载 RedisGraph,需要在 redis.conf 文件的模块部分将 RediSearch 的 loadmodule 配置项放在 RedisGraph 的 loadmodule 配置项之前。在完成编辑 redis.conf 之后,需要重启 Redis 服务器让配置生效。


在之前演示的 demo 中,我使用 RedisGraph-bulk-loader 脚本将以下内容从 CSV 加载到 RedisGraph,从而包括了我们收集的数据集。这个数据集只包括哺乳动物,因为其他动物的数据质量较低(非哺乳动物物种很少有好的维基百科描述)。


下面是加载数据的例子:


$ cd redisgraph-bulk-loader/$ python3 bulk_insert.py MAMMALS -q -n /path/to/demo/dataload/Class.csv -n/path/to/demo/dataload/Family.csv -n /path/to/demo/dataload/Genus.csv -n/path/to/demo/dataload/Order.csv -n /path/to/demo/dataload/Species.csv -r/path/to/demo/dataload/IN_CLASS.csv -r /path/to/demo/dataload/IN_FAMILY.csv -r/path/to/demo/dataload/IN_GENUS.csv -r /path/to/demo/dataload/IN_ORDER.csv -ayourpassword1 nodes created with label 'Class'157 nodes created with label 'Family'1272 nodes created with label 'Genus'29 nodes created with label 'Order'5616 nodes created with label 'Species'29 relations created for type 'IN_CLASS'1272 relations created for type 'IN_FAMILY'5616 relations created for type 'IN_GENUS'157 relations created for type 'IN_ORDER'Construction of graph 'MAMMALS' complete: 7075 nodes created, 7074 relationscreated in 0.443749 seconds$ redis-cli -a yourpassword GRAPH.QUERY MAMMALS "CALLdb.idx.fulltext.createNodeIndex('Species','description')"Warning: Using a password with '-a' or '-u' option on the command lineinterface may not be safe.1) (empty list or set)2) (empty list or set)3) 1) "Query internal execution time: 324.970000 milliseconds"
复制代码


(gist:https://gist.github.com/stockholmux/0727a4a784a46f8cb9e8329d393a513a)


在这里,key MAMMALS 包含了我们的整个图表。一些重要的注意事项:


•bulk_insert.py 上的-q 开关非常重要,因为它允许在读取 CSV 时进行智能引用。


•调用一次 redis-cli 对所有节点进行批量索引,从而为全文搜索摄取了 7000 多个文档。


现在让我们启动并运行一个 UI。和几乎所有 Node.js 应用程序一样,我们先安装 npm。安装大概需要几秒钟,因为我们不仅要管理 Node 的服务器端文件。还有前端的 Vue.js 组件。如果你最近没有花很多时间在前端 JavaScript 上,那你大概不能使用一个 FTP 和 HTML 文件来实现这些功能。所幸现代前端确实重视工具,所以我们可以安装 VueCLI(我建议遵循 Vue CLI 入门指南)。


在你的前端工具准备好过后,让我们继续来讲 npm 安装和启动运行前端上:


$ npm run build
复制代码


这将创建我们所有前端文件的 dist 目录。现在我们有数据在 Redis 里,我们的前端文件也准备好启动服务,所以我们可以连接 Redis 服务器:


$ node server.js -p 6379 -a yourpassword -hyourhostOrlocalhost
复制代码


让我们先讨论一下关于我们刚刚打开的这个服务器的一些问题。它构建在 Express.js 上,主要使用 WebSocket 进行通信。我还集成了可视化引擎调试工具,它允许您在单独的浏览器窗口中查看正在执行的命令。你可以把浏览器指向地址:http://localhost:4444


总之,相对于它所实现的功能来说,它非常的简短——只有 75 行代码。我们的解决方案不需要那么长,因为我们实际上所做的就是接受 WebSocket 连接,根据传递的消息运行 Redis 命令,然后将这些消息与结果一起传递回来。Redis(Graph)做了所有复杂的工作。让我们看看正在执行的命令。


为了搜索关键字,我们运行这个命令:


> GRAPH.QUERY MAMMALS"CALL db.idx.fulltext.queryNodes('Species','cat house pet')"
复制代码


这很简单。我们的键是哺乳动物,我们使用一个特殊的语法调用了一个特定的函数,它的第一个参数是我们要查找的节点的标签,另一个参数是实际要搜索的字符串。您可以传递有效的 RediSearch 参数进行查询,但请记住,目前这只是全文本搜索,因此不要使用地理空间、标记或数字子句。


一旦我们确定了我们要比较的两种动物,我们就可以使用一个简单的命令进行查询:


GRAPH.QUERY MAMMALS"MATCH (s:Species)-[]->(x)<-[]-(c:Species) WHERE c.fullname =‘Felis catus’ AND s.fullname = ‘Balaenoptera borealis’ RETURN x.name,labels(x) LIMIT 1"

在 server.js 文件中,这些查询被表示为 JavaScript 模板字符串,没有对用户隐藏,用户输入的字符串被直接插入到输入中进行查询。但如果在生产环境中部署类似这样的东西,就需要小心接收和校验用户输入。

如果打算修改前端代码,请确保编辑的是/src 目录,而不是/dist。编辑之后,您需要再次运行 npmrun build 或使用开发服务器(npmrun serve),该服务器自动编译对前端代码的更改,并将其提供给另一个端口。这是一个非常标准的 Vue.js 和 Bootstrap 应用。唯一真正相关的文件是:

/src/App.js, /src/components/panels.vue and /src/components/search.vue.

以上就是一个简单的功能强大的 demo,集成了两个不同的 Redismodule:RediSearch 和 RedisGraph。我鼓励你使用你自己数据集来体验这个 demo。


本文转载自 中间件小哥 公众号。


原文链接:https://mp.weixin.qq.com/s/dbqatouGwg0P_L9_SR5v_Q


2020-03-01 21:42970

评论

发布
暂无评论
发现更多内容

【堡垒机小知识】堡垒机是硬件还是软件?

行云管家

网络安全 信息安全 数据安全 堡垒机

阿里IM技术分享(六):闲鱼亿级IM消息系统的离线推送到达率优化

JackJiang

架构设计 即时通讯 IM

iOS开发面试和底层学习视频整理合集

iOSer

ios iOS面试 ios开发 iOS视频学习 iOS涨薪

许式伟:Go+ v1.x 的设计与实现丨Go+ 公开课 • 第一期

七牛云

Go 语言 goplus

Go iota 原理和源码剖析

编程宝库

许式伟:Go+ Together丨Go+ 1.0 发布会干货分享

七牛云

Go 语言

Microsoft SQL Server 迁移利器,Babelfish for Aurora PostgreSQL 上线!

亚马逊云科技 (Amazon Web Services)

数据库 开源 源代码

参会指南 | 2021MongoDB南京技术沙龙

MongoDB中文社区

mongodb

【高并发】通过源码深度分析线程池中Worker线程的执行流程

冰河

Java 并发编程 多线程 高并发 异步编程

视野 | OpenSearch,云厂商的新选择?

RadonDB

数据库 搜索引擎; Elastic Search

拒绝编译等待 - 动态研发模式 ARK

字节跳动终端技术

ios 字节跳动 移动开发

网易云信发布虚拟形象实时互动融合 SDK ,元宇宙大幕即将开启

网易云信

人工智能 数字化 元宇宙

Go+ Together!Go+ 1.0 发布会暨 Go+ 开发者基金会启动仪式圆满结束!

七牛云

Go 语言

vue3 学习笔记 (一)——mixin 混入

码仔

Vue3 mixin

程序员的硬核浪漫 — 女友专属语聊房(内附源码)

ZEGO即构

音视频 语聊房 demo源码 即构科技

HarmonyOS 3.0.0开发者预览版全新发布

HarmonyOS开发者

HarmonyOS ArKUI 3.0 ArkCompiler 3.0

黄东旭:写给后端程序员看的认知心理学丨Go+ 1.0 发布会干货分享

七牛云

Go 语言

林昊:开发者如何提升写代码的硬实力丨Go+ 1.0 发布会干货分享

七牛云

Go 语言

原因揭秘!为什么选择 Pulsar 而非 Kafka

Apache Pulsar

kafka 开源 架构 分布式 Apache Pulsar

巅峰对话在线研讨 Q&A:Oracle Database 21c vs openGauss 2.0新特性解读和架构演进

墨天轮

数据库 oracle opengauss

频繁更新主机,导致pod ip不够解决方法

ilinux

🏆【Alibaba中间件技术系列】「RocketMQ技术专题」小白专区之领略一下RocketMQ基础之最!

码界西柚

RocketMQ 消息队列 Alibaba技术 11月日更

多变的智能降噪

睿象云

运维 告警 智能运维 告警管理

构建 Snowpack + React + Typescript + Electron的Desktop App

吴脑的键客

typescript Electron React webpack

技术分享| 如何做一款容纳百人的视频会议?

anyRTC开发者

音视频 WebRTC 视频会议 实时通信 视频通话

北省廊坊市本地有等保测评机构吗?在哪里?

行云管家

网络安全 等保 等级保护 等保测评 廊坊

无处不在的 Kubernetes,难用的问题解决了吗?

阿里巴巴中间件

阿里云 Kubernetes 容器 云原生 中间件

干货分享:细说双 11 直播背后的压测保障技术

阿里巴巴中间件

阿里云 云原生 中间件 全链路 PTS

明道云商业化成果巡礼|2021年11月

明道云

一个站点不够学?那就在用Python增加一个采集目标,一派话题广场+某金融论坛话题广场爬虫

梦想橡皮擦

11月日更

恒源云(GPUSHARE)_基于梯度的NLP对抗攻击方法

恒源云

人工智能 深度学习

多模块进行时:同时使用 RedisGraph 和 RediSearch 模块_行业深度_翻译自redis.io_InfoQ精选文章