写点什么

Python 中常见的数据结构:字典、映射和散列表

  • 2019-09-30
  • 本文字数:2540 字

    阅读完需:约 8 分钟

Python中常见的数据结构:字典、映射和散列表

在 Python 中,字典是核心数据结构。字典可以存储任意数量的对象,每个对象都由唯一的字典键标识。


字典通常也被称为映射、散列表、查找表或关联数组。字典能够高效查找、插入和删除任何与给定键关联的对象。


这在现实中意味着什么呢?字典对象相当于现实世界中的电话簿。


电话簿有助于快速检索与给定键(人名)相关联的信息(电话号码)。因此不必为了查找某人的号码而浏览整本电话簿,根据人名基本上就能直接跳到需要查找的相关信息。


若想研究以何种方式组织信息才有利于快速检索,上述类比就不那么贴切了。但基本性能特征相同,即字典能够用来快速查找与给定键相关的信息。


总之,字典是计算机科学中最常用且最重要的数据结构之一。


那么 Python 如何处理字典呢?


我们来看看 Python 及其标准库中可用的字典实现。

dict——首选字典实现

由于字典非常重要,因此 Python 直接在语言核心中实现了一个稳健的字典 1:dict 数据类型 2。


1 为了与其他资料统一,这里将不区分中文语境下的 dict(字典)和“字典类型的数据结构”,统称为“字典”。——译者注


2 详见 Python 文档:“Mapping Types — dict”。


Python 还提供了一些有用的“语法糖”来处理程序中的字典。例如,用花括号字典表达式语法和字典解析式能够方便地创建新的字典对象:


phonebook = {    'bob': 7387,    'alice': 3719,    'jack': 7052,}
squares = {x: x * x for x in range(6)}
>>> phonebook['alice']3719
>>> squares{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}
复制代码


关于哪些对象可以作为字典键,有一些限制。


Python 的字典由可散列类型 3 的键来索引。可散列对象具有在其生命周期中永远不会改变的散列值(参见__hash__),并且可以与其他对象进行比较(参见__eq__)。另外,相等的可散列对象,其散列值必然相同。


像字符串和数这样的不可变类型是可散列的,它们可以很好地用作字典键。元组对象也可以用作字典键,但这些元组本身必须只包含可散列类型。


Python 的内置字典实现可以应对大多数情况。字典是高度优化的,并且是 Python 语言的基石,例如栈帧中的类属性和变量都存储在字典中。


Python 字典基于经过充分测试和精心调整过的散列表实现,提供了符合期望的性能特征。一般情况下,用于查找、插入、更新和删除操作的时间复杂度都为 O(1)。


大部分情况下,应该使用 Python 自带的标准字典实现。但是也存在专门的第三方字典实现,例如跳跃表或基于 B 树的字典。


除了通用的 dict 对象外,Python 的标准库还包含许多特殊的字典实现。它们都基于内置的字典类,基本性能特征相同,但添加了其他一些便利特性。


下面来逐个了解一下。

collections.OrderedDict——能记住键的插入顺序

collections.OrderedDict 是特殊的 dict 子类,该类型会记录添加到其中的键的插入顺序。


尽管在 CPython 3.6 及更高版本中,标准的字典实现也能保留键的插入顺序,但这只是 CPython 实现的一个副作用,直到 Python 3.7 才将这种特性固定下来了。因此,如果在自己的工作中很需要用到键顺序,最好明确使用 OrderedDict 类。


顺便说一句,OrderedDict 不是内置的核心语言部分,因此必须从标准库中的 collections 模块导入。


>>> import collections>>> d = collections.OrderedDict(one=1, two=2, three=3)
>>> dOrderedDict([('one', 1), ('two', 2), ('three', 3)])
>>> d['four'] = 4>>> dOrderedDict([('one', 1), ('two', 2), ('three', 3), ('four', 4)])
>>> d.keys()odict_keys(['one', 'two', 'three', 'four'])
复制代码

collections.defaultdict——为缺失的键返回默认值

defaultdict 是另一个 dict 子类,其构造函数接受一个可调用对象,查找时如果找不到给定的键,就返回这个可调用对象。


与使用 get()方法或在普通字典中捕获 KeyError 异常相比,这种方式的代码较少,并能清晰地表达出程序员的意图。



>>> from collections import defaultdict>>> dd = defaultdict(list)
# 访问缺失的键就会用默认工厂方法创建它并将其初始化# 在本例中工厂方法为list():>>> dd['dogs'].append('Rufus')>>> dd['dogs'].append('Kathrin')>>> dd['dogs'].append('Mr Sniffles')
>>> dd['dogs']['Rufus', 'Kathrin', 'Mr Sniffles']
复制代码

collections.ChainMap——搜索多个字典

collections.ChainMap 数据结构将多个字典分组到一个映射中 8,在查找时逐个搜索底层映射,直到找到一个符合条件的键。对 ChainMap 进行插入、更新和删除操作,只会作用于其中的第一个字典。


>>> from collections import ChainMap>>> dict1 = {'one': 1, 'two': 2}>>> dict2 = {'three': 3, 'four': 4}>>> chain = ChainMap(dict1, dict2)
>>> chainChainMap({'one': 1, 'two': 2}, {'three': 3, 'four': 4})
# ChainMap在内部从左到右逐个搜索,# 直到找到对应的键或全部搜索完毕:>>> chain['three']3>>> chain['one']1>>> chain['missing']KeyError: 'missing'
复制代码

types.MappingProxyType——用于创建只读字典

MappingProxyType 封装了标准的字典,为封装的字典数据提供只读视图。该类添加自 Python 3.3,用来创建字典不可变的代理版本。


举例来说,如果希望返回一个字典来表示类或模块的内部状态,同时禁止向该对象写入内容,此时 MappingProxyType 就能派上用场。使用 MappingProxyType 无须创建完整的字典副本。


>>> from types import MappingProxyType>>> writable = {'one': 1, 'two': 2}>>> read_only = MappingProxyType(writable)
# 代理是只读的:>>> read_only['one']1>>> read_only['one'] = 23TypeError:"'mappingproxy' object does not support item assignment"
# 更新原字典也会影响到代理:>>> writable['one'] = 42>>> read_onlymappingproxy({'one': 42, 'two': 2})
复制代码

小结:Python 中的字典

本节列出的所有 Python 字典实现都是内置于 Python 标准库中的有效实现。


一般情况下,建议在自己的程序中使用内置的 dict 数据类型。这是优化过的散列表实现,功能多且已被直接内置到了核心语言中。


如果你有内置 dict 无法满足的特殊需求,那么建议使用本节列出的其他数据类型。


虽然前面列出的其他字典实现均可用,但大多数情况下都应该使用 Python 内置的标准 dict,这样其他开发者在维护你的代码时就会轻松一点。


本文内容来自作者图书作品《深入理解 Python 特性》,点击购买


2019-09-30 14:311633

评论

发布
暂无评论
发现更多内容

使用Eclipse连接SAP云平台上的HANA数据库实例

汪子熙

数据库 Cloud SAP 11月日更

阿里二面被问16道 volatile 问题,玩命补充jvm、多线程、高并发

Java 程序员 后端

阿里又一个“逆天”容器框架!这本Kubernetes进阶手册简直太全了

Java 程序员 后端

用JavaScript访问SAP云平台上的服务遇到跨域问题该怎么办

汪子熙

JavaScript SAP 11月日更 SAP微信集成

阿里程序员:入职才两个月,我决定离职

Java 程序员 后端

阿里三面:CAP和BASE理论了解么?可以结合实际案例说下?

Java 程序员 后端

阿里技术3面+HR面,奋战两个月,终斩获offer定级阿里P6+

Java 程序员 后端

阿里技术官亲手总结Part 10个知识点!主动分享!收藏必备!

Java 程序员 后端

阿里亿级长连网关的云原生演进之路

Java 程序员 后端

阿里大师推荐的这份Java开发必读书单,让我成功在寒冬中站稳脚步

Java 程序员 后端

阿里架构师剖析程序运行原理,程序是如何运行又是如何崩溃的?

Java 程序员 后端

阿里P8面试官梳理的2020年999道大厂高频Java面试题(附答案)

Java 程序员 后端

阿里一面就凉了:MySQL+多线程+Redis+算法

Java 程序员 后端

一周信创舆情观察(11.1~11.7)

统小信uos

阿里巴巴内部涨薪必备的“王者级Dubbo实战笔记”,不啃透不下班

Java 程序员 后端

助力数字孪生,TDengine在叁零肆零仿真平台中的实践

TDengine

数据库 tdengine 后端

技术为本,中科柏诚致力于打造高效供应链金融平台

联营汇聚

阿里内部疯传的分布式架构手册,轻松吊打小日子过的不错的面试官

Java 程序员 后端

阿里员工感慨:码农们过去暴富有多轻松,现在赚钱就有多辛苦!

Java 程序员 后端

阿里五面(4轮技术+HR)成功逆袭,面经分享

Java 程序员 后端

阿里大牛看了也要膜拜的大话代码架构(项目实战版)终于出来了

Java 程序员 后端

35w奖金池,腾讯云TDSQL精英挑战赛正式开赛!

科技热闻

阿里Redis最全面试全攻略,读完这个就可以和阿里面试官好好聊聊

Java 程序员 后端

鸿蒙轻内核源码分析:虚拟内存

华为云开发者联盟

鸿蒙 内存 虚拟内存 OpenHarmony 轻内核

阿里三面面试题:分布式服务注册中心该如何选型?我快哭了

Java 程序员 后端

阿里一面,给了几条SQL,问需要执行几次树搜索操作?

Java 程序员 后端

阿里内部绝密Java面试笔记(珠峰版),冒着被开的风险免费分享

Java 程序员 后端

阿里老人吐槽:新人水平差不服管不加班!汇报经理让他无法转正(1)

Java 程序员 后端

阿里巴巴蚂蚁金服Java面试经历包含答案解析

Java 程序员 后端

阿里技术总监纯手打的内部手册《MySQL笔记》真是太硬核了

Java 程序员 后端

阿里老人吐槽:新人水平差不服管不加班!汇报经理让他无法转正

Java 程序员 后端

Python中常见的数据结构:字典、映射和散列表_编程语言_Dan Bader_InfoQ精选文章