写点什么

对话 OpenAI Greg Brockman:GPT-4 并不完美,但人类也一样

  • 2023-03-23
    北京
  • 本文字数:2781 字

    阅读完需:约 9 分钟

对话OpenAI Greg Brockman:GPT-4并不完美,但人类也一样

OpenAI日前发布了备受期待的文本生成 AI 模型 GPT-4。在举世轰动之余,人们也实在好奇这样的辉煌成就究竟是如何被创造出来的。

 

GPT-4 在多个关键层面对上代 GPT-3 实现了超越,包括提供更符合事实的陈述,也允许开发人员轻松设定风格和行为。它还具备多模态支持能力,可以理解图像,甚至根据照片内容添加标题和做出解读。

 

GPT-4也有不少严重缺陷。与 GPT-3 一样,该模型仍存在“幻觉”和基础性的推理错误。OpenAI 自己发布博文称,GPT-4 将猫王称为“演员的儿子”(他的父母并非演员)。

 

为了更好地了解 GPT-4 的开发周期、现有功能和局限性,我们有幸与 OpenAI 联合创始人兼总裁 Greg Brockman 进行了交谈。

 

在被问及 GPT-4 和GPT-3的区别时,Brockman 只说了一个词:不一样。

 

“二者确实不一样。GPT-4 模型仍然存在很多问题和错误……但也可以看到,它对微积分和法律内容的理解实现了飞跃。尽管在某些领域的表现还是不行,但在其他方面就算用衡量人类的标准看也是相当出色。”

 

测试结果也证实了他的说法。在美国大学理事会的 AP 微积分 BC 考试中,GPT-4 获得了 4 分(满分 5 分),GPT-3 则仅获得 1 分。(作为 GPT-3 与 GPT-4 之间的过渡版本,GPT-3.5 同样拿到 4 分。)而在模拟律师考试中,GPT-4 的排名在人类考生中挤入前 10%,GPT-3.5 的分数则在倒数 10%左右。

 

此外,GPT-4还表现出了有趣的多模态支持能力。与只能接受文本提示的 GPT-3 和 GPT-3.5(例如「写一篇关于长颈鹿的文章」)不同,GPT-4 能够通过图像和文本提示来执行某些操作。(例如提交一张长颈鹿的实拍照片,问「图中有多少只长颈鹿?」)

 

这是因为 GPT-4 接受了图像和文本数据的双料训练,而前面几个版本只接受过文本训练。OpenAI 表示,训练数据来自“各种许可、创建且公开可用的数据源,其中可能包括公开可用的个人信息”。但 Brockman 拒绝回答更多具体细节(OpenAI 之前曾经因训练数据的归属问题陷入法律纠纷)。

 

GPT-4 也确实表现出令人印象深刻的图像理解能力。例如,输入提示“这张图片的笑点在哪里?”,再配上一张 VGA 线接 iPhone 的照片,GPT-4 就正确理解了个中内容并详细做出解释(「图像中的笑点,来自错误将陈旧的大 VGA 端口接入小型现代智能手机的充电口」)。

 

目前只有一家合作伙伴获准使用 GPT-4 的图像分析功能,这就是名为 Be My Eyes 的视障人士辅助应用。Brockman 表示,OpenAI 正在评估功能开放的风险和收益,而且后续推广一定会采取“缓慢且谨慎的方式”。

 

“我们需要想办法解决人脸识别和人物肖像等政策性问题。我们得摸清危险区在哪里、红线在哪里,然后随时间推移逐步找到正确的处理方式。”

 

OpenAI 的文本到图像系统DALL-E 2 也遭遇过类似的道德困境。OpenAI 最初允许客户上传人脸,使用 AI 图像生成系统进行画面编辑,但在激起反对后紧急叫停。后来 OpenAI 宣称安全系统已经升级,能够“最大限度降低 deepfakes、色情、政治和暴力内容造成的潜在危害”,并将人脸编辑功能重新开放。

 

另一大隐患在于 GPT-4 可能被用于造成意外危害,包括利用目标心理、实施金钱欺诈等。模型发布数小时之后,以色列网络安全初创公司 Adversa AI 就发布博文,表示已成功绕过 OpenAI 的内容过滤器,甚至公开了让 GPT-4 生成网络钓鱼邮件、对同性恋者的攻击性描述及其他有毒文本的办法。

 

这在语言模型领域算是个老大难问题了。Meta公司的 BlenderBot 和 OpenAI 的ChatGPT都曾在用户的“诱导”下生成了极具冒犯性的内容,甚至透露了系统内部运作的敏感细节。但人们仍然对 AI 大模型的表现振奋不已,也期待 GPT-4 能在自我审查和节制方面实现重大改进。

 

在被问及 GPT-4 的稳健性时,Brockman 强调该模型已经接受了六个月的安全训练。而且在内部测试中,它对 OpenAI 禁止内容做出响应的几率较 GPT-3.5 降低了 82%,生成“符合事实”响应的几率则提高了 40%。

 

“我们花了很多时间来摸索 GPT-4 的能力,摸索的方式就是把它对外公布。我们不断做更新,包括一系列改进,希望模型能真正匹配使用者想要的个性或模式。”

 

但必须承认,早期实际测试的结果并不理想。除了 Adversa AI 测试之外,基于 GPT-4 的微软聊天机器人 Bing Chat 也被证明极易被“攻破”。利用精心设计的输入,用户已经能让机器人表达爱意、威胁伤害、支持大屠杀和编造阴谋论。

 

Brockman 并不否认 GPT-4 的种种不足。但他也强调了该模型所使用的新型操控缓解工具,包括 API 级的“系统”消息功能。系统消息的本质是一种指令,负责为 GPT-4 的交互行为设定基调和边界。例如,系统消息可以这样编写,“你是一位苏格拉底式的思辨型导师,你永远不会直接给学生答案,而是通过一个个正确的问题帮助他们学会独立思考。”

 

OpenAI希望把系统消息当作护栏,防止 GPT-4 偏离既定“轨道”。

 

“我们一直在努力理解 GPT-4 的基调、风格和实质从何而来。我觉得现在我们已经在工程层面找到些思路了,包括如何实现可重现的过程,生成对人们真正有用的可预测结果。”

 

Brockman 还谈到了 Evals,这是 OpenAI 用于评估其 AI 模型性能的全新开源软件框架。OpenAI 希望借此保证自家模型的“稳健性”。Evals 允许用户开发和运行基准测试,以此评估 GPT-4 等模型的性能,这意味着大语言模型将步入众包测试的新时代。

 

“借助 Evals,我们能够以系统化的方式掌握用户最关心的用例,并据此开展测试。之所以决定开源,也是考虑到我们后续不会再隔三个月才发布新模型,而是转向持续改进的方式。如果无法衡量,自然也就无法实现了,对吧?在为模型开发新版本时,我们至少可以借此了解哪些地方发生了变化。”

 

我们询问 Brockman,OpenAI 打不打算向通过 Evals 测试其模型的人们付费。他暂时给不出确切的结论,但表示 OpenAI 确实向指定的 Evals 用户开放了 GPT-4 API 的早期访问权限。

 

Brockman 还谈到了 GPT-4 的上下文窗口,也就是模型在生成新文本之前能够参考的文本量。OpenAI 目前正在测试 GPT-4 某一特定版本,其能够“记住”约 50 页内容。换句话说,这个版本的“记忆容量”相当于普通 GPT-4 的 5 倍、GPT-3 的 8 倍。

 

Brockman 认为更大的上下文窗口将派生出前所未有的新型应用程序,特别是在企业场景之下。他设想会有专门为企业业务构建的 AI 聊天机器人,能够利用不同来源(包括各部门员工)的上下文和知识以娴熟的对话解惑答疑。

 

这虽然不是什么新鲜概念,但 Brockman 表示 GPT-4 的回答质量要远远高于责令一切聊天机器人和搜索引擎。

 

“以往,模型并不知道是谁在发问、你对哪些内容感兴趣等。更大的上下文窗口代表着更丰富的参考信息,肯定会让 AI 模型掌握更多知识、更好地为人类赋能。”

 

原文链接:

https://techcrunch.com/2023/03/15/interview-with-openais-greg-brockman-gpt-4-isnt-perfect-but-neither-are-you/?guccounter=1&guce_referrer=aHR0cHM6Ly9uZXdzLnljb21iaW5hdG9yLmNvbS8&guce_referrer_sig=AQAAAATciFx2sgGMIyHWoErJAFDo6hB-eouE0HxMvTSOgk8aD6C_Clkzk1JtNZaOTbUtf9Sa-BuwBS36sQu2t7l6vwj58K34WkrFWPpyEGskLBTvfqdMXbtLtF6ZaOoTWSWRCt7Egccc-lQIqGECJN5Y2gZX1WXh9FR5o17IQEHY3jjf

2023-03-23 16:594712
用户头像
李冬梅 加V:busulishang4668

发布了 1121 篇内容, 共 738.3 次阅读, 收获喜欢 1267 次。

关注

评论

发布
暂无评论
发现更多内容

从URL输入到页面展现到底发生什么?

loveX001

JavaScript

「Go框架」路由:web框架中是如何根据url地址找到对应的处理逻辑的?

Go学堂

golang 个人成长 程序员‘ 12月月更

vivo 推荐业务 x DeepRec:全链路优化实践

阿里云大数据AI技术

人工智能 gpu 推荐引擎 12 月 PK 榜

如何实现移除控件?

Towify

编辑器 无代码 无代码微信小程序

先到先学!阿里新产Spring全家桶核心笔记,底层源码+应用全覆盖

程序员小毕

spring 源码 后端 架构师 java面试

SPL 和 SQL 能不能融合在一起?

jiangxl

如何使用Towify在微信小程序中配置输入必填报错?

Towify

小程序 微信小程序 无代码 无代码微信小程序

实用指南:手把手搭建坚若磐石的DevSecOps框架

SEAL安全

DevSecOps 12 月 PK 榜 DevSecOps框架 实用指南

Java7提供的Fork/Join框架实现高并发程序,你会使用吗

华为云开发者联盟

高并发 开发 华为云 12 月 PK 榜

React源码解读之更新的创建

flyzz177

前端刷完这12道滑动窗口,就可以出山面试了

js2030code

JavaScript LeetCode

贾斯特里尼&布鲁克斯,葡萄酒中的天花板

联营汇聚

React源码分析5-commit

flyzz177

React

前端工程师leetcode算法面试必备-二分搜索算法(上)

js2030code

JavaScript LeetCode

分支路径图调度框架在 vivo 效果广告业务的落地实践

vivo互联网技术

图调度 效果广告 分支路径

低碳机关先行,昆明引领分布式光伏新变革

极客天地

新项目为什么决定用 JDK 17了

古时的风筝

Java JVM jdk17

数据可视化图表系列解析——折线图

Data 探险实验室

数据分析 可视化 数据可视化 可视化数据 折线图与饼图

从输入URL到渲染的完整过程

loveX001

JavaScript

好酒要有好工艺,贾斯特里尼&布鲁克斯,用心酿造每一滴酒

联营汇聚

前端关于面试你可能需要收集的面试题

loveX001

JavaScript

【观看直播有礼】第三届云原生实战峰会正式官宣启动

阿里巴巴云原生

阿里云 云原生 实战峰会

React源码分析6-hooks源码

flyzz177

React

react源码中的fiber架构

flyzz177

React

react hook 源码完全解读

flyzz177

React

前端必会面试题总结

loveX001

JavaScript

【论文推荐】TDSC2022 安全补丁识别最新的方案E-SPI

华为云开发者联盟

后端 开发 华为云 12 月 PK 榜

用javascript分类刷leetcode3.动态规划(图文视频讲解)

js2030code

JavaScript LeetCode

陈世佳酿贾斯特里尼&布鲁克斯,优质葡萄酒连储藏都有秘诀

联营汇聚

软件测试 | 测试开发 | 一文搞定 Postman 接口自动化测试

测吧(北京)科技有限公司

对话OpenAI Greg Brockman:GPT-4并不完美,但人类也一样_AI&大模型_Kyle Wiggers_InfoQ精选文章