写点什么

国产大模型研究论文入选 AI 顶会,智谱 AI 详解千亿基座问答模型 GLM-130B,其在准确性指标上与 GPT-3 相当

  • 2023-05-05
    北京
  • 本文字数:2090 字

    阅读完需:约 7 分钟

国产大模型研究论文入选AI顶会,智谱AI详解千亿基座问答模型 GLM-130B,其在准确性指标上与 GPT-3 相当

4 月 30 日-5 月 4 日,Google Scholar 评分计算机领域最高的人工智能顶级国际会议 ICLR 2023 (International Conference on Learning Representations)举行。同期互联网领域顶级国际会议 TheWebConf (原 WWW) 2023 也在美国奥斯丁召开。


智谱 AI 和清华 KEG 联合研究预训练大模型以及图神经网络,多篇文章在大会上发表。据悉,智谱 AI 联合清华在 ICLR 2023 上发表的文章主要介绍了千亿基座模型 GLM-130B。


它是不同于 BERT、GPT-3 以及 T5 的架构,是一个包含多目标函数的自回归预训练模型。该模型有一些独特的优势:


  • 双语: 同时支持中文和英文。

  •  高精度(英文): 在公开的英文自然语言榜单 LAMBADA、MMLU 和 Big-bench-lite 上优于 GPT-3 175B(API: davinci,基座模型)、OPT-175B 和 BLOOM-176B。

  • 高精度(中文): 在 7 个零样本 CLUE 数据集和 5 个零样本 FewCLUE 数据集上明显优于 ERNIE TITAN 3.0 260B 和 YUAN 1.0-245B。

  • 快速推理: 首个实现 INT4 量化的千亿模型,支持用一台 4 卡 3090 或 8 卡 2080Ti 服务器进行快速且基本无损推理。

  • 可复现性: 所有结果(超过 30 个任务)均可通过我们的开源代码和模型参数复现。

  •  跨平台: 支持在国产的海光 DCU、华为昇腾 910 和申威处理器及美国的英伟达芯片上进行训练与推理。



去年 11 月,斯坦福大学大模型中心对全球 30 个主流大模型进行了全方位的评测,GLM-130B 是亚洲唯一入选的大模型。在与 OpenAI、谷歌大脑、微软、英伟达、脸书的各大模型对比中,评测报告显示 GLM-130B 在准确性和恶意性指标上与 GPT-3 175B (davinci) 接近或持平,鲁棒性和校准误差在所有千亿规模的基座大模型(作为公平对比,只对比无指令提示微调模型)中表现不错。目前,该模型收到 69 个国家 1000 多个研究机构(截至 2023 年 5 月 1 日)的下载使用需求。




据悉,今年来,智谱 AI 在千亿基座模型 GLM-130B 中注入了代码预训练,通过有监督微调(Supervised Fine-Tuning)等技术实现人类意图对齐,发布了 ChatGLM。类似 ChatGPT,这是一个具有问答和对话功能的千亿中英语言模型, 并针对中文进行了优化。


与此同时,智谱 AI 还开源了最新的中英双语对话 GLM 模型: ChatGLM-6B,结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。经过约 1T 标识符的中英双语训练,辅以监督微调、 反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 虽然规模不及千亿模型,但大大降低了用户部署的门槛,并且已经能生成相当符合人类偏好的回答。目前, ChatGLM-6B 模型全球下载超过 100 万。


在 WWW 2023 上,智谱 AI 联合清华发表了关于图神经网络 GNN 工具平台的论文 CogDL。


CogDL 是一个广泛的图神经网络工具包,它为现实世界的问题,尤其是那些涉及大规模数据的问题提供了许多有效和高效的解决方案。该工具包通过整合多种不同的下游任务,同时搭配合适的评估方式,使得研究者和使用者可以方便、快速地运行出各种基线模型的结果,进而将更多精力投入研发新模型的工作之中。


CogDL 最特别的一点在于它以任务(task)为导向来集成所有算法,将每一个算法分配在一个或多个任务下,从而构建了 “数据处理-模型搭建-模型训练和验证” 一条龙的实现。


CogDL 的图表示学习算法可以分为两类:一类是基于图神经网络的算法,另一类是基于 Skip-gram 或矩阵分解的算法。前者包括 GCN、GAT、GraphSAGE 和 DiffPool 等,以及适用于异构图的 RGCN、GATNE 等;后者则包括 Deepwalk、Node2Vec、HOPE 和 NetMF 等,以及用于图分类的 DGK、graph2vec 等算法。大体上,CogDL 将已有图表示学习算法划分为以下 6 项任务:


  • 有监督节点分类任务(node classification):包括 GCN、GAT、GraphSAGE、MixHop 和 GRAND 等;

  • 无监督节点分类任务(unsupervised node classification):包括 DGI、GraphSAGE(无监督实现),以及 Deepwalk、Node2vec、ProNE 等;

  • 有监督图分类任务(graph classification):包括 GIN、DiffPool、SortPool 等;

  •  无监督图分类任务(unsupervised graph classification):包括 InfoGraph、DGK、Graph2Vec 等;

  •  链接预测任务(link prediction):包括 RGCN、CompGCN、GATNE 等;

  • 异构节点分类(multiplex node classification):包括 GTN、HAN、Metapath2vec 等。



CogDL 还包括图上的预训练模型 GCC,GCC 主要利用图的结构信息来预训练图神经网络,从而使得该网络可以迁移到其他数据集上,来取得较好的节点分类和图分类的效果。



那么,研究者和使用者可以利用 CogDL 做些什么?主要有三点:跟进 SOTA、复现实验,以及自定义模型和数据。


跟进 SOTA。CogDL 跟进最新发布的算法,包含不同任务下 SOTA 的实现,同时建立了不同任务下所有模型的 leaderboard(排行榜),研究人员和开发人员可以通过 leaderboard 比较不同算法的效果。


复现实验。论文模型的可复现性是非常重要的。CogDL 通过实现不同论文的模型也是对模型可复现性的一个检验。


自定义模型和数据。“数据-模型-训练”三部分在 CogDL 中是独立的,研究者和使用者可以自定义其中任何一部分,并复用其他部分,从而提高开发效率。


CogDL 非常简单易用,下面给出了一个调用 CogDL 的例子,可以看出 CogDL 的代码比如 PyG 和 DGL 简单很多。



2023-05-05 18:384553
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 544.1 次阅读, 收获喜欢 1978 次。

关注

评论

发布
暂无评论
发现更多内容

Mac音频采样器Kontakt 7最新版v7.3.0下载

Rose

mac音频采样器 Kontakt 7激活版 Native Instruments Kontakt 7 mac下载

华为云数据灾备方案,助力政企数据无忧

神奇视野

中软国际亮相OpenHarmony开发者大会,荣获A类捐赠人授牌认可

科技热闻

Web平台规模化部署高效编码格式的实践和思考

阿里技术

视频编解码

Redis布隆过滤器的原理和应用场景,解决缓存穿透

做梦都在改BUG

Java redis 缓存 布隆过滤器

产教融合| 赛意信息·讯方·深信息产教融合交流研讨会暨国产工业软件人才培养战略合作示范基地揭牌仪式圆满举办

科技热闻

华为云数据灾备,助力企业业务极速恢复

YG科技

浅论分布式训练中的recompute机制

百度Geek说

机器学习 深度学习 分布式 企业号 4 月 PK 榜

阿里P8面试官推荐学习的11大专题:java面试精讲框架文档

做梦都在改BUG

Java java面试 框架

阿里十亿级并发系统设计+java性能优化实战

做梦都在改BUG

Java 性能调优 并发系统设计

等保2.0时代,华为云助力客户做好等保合规

神奇视野

vue3学习-Composition API

格斗家不爱在外太空沉思

Vue 3 三周年连更

Shell在日常工作中的应用实践

京东科技开发者

Linux Shell 服务器 shell脚本编程 企业号 4 月 PK 榜

企业微信接入系列-扫码绑定/登录

六月的雨在InfoQ

企业微信 三周年连更 企业微信扫码 企业微信接入

关于软件测试领域的 Happy Path

汪子熙

软件测试 测试 自动化测试 测试自动化 三周年连更

迎政策东风,华为云为企业“等保”建设打开想象空间

神奇视野

防患于未然,华为云数据灾备解决方案保护企业数据安全

YG科技

2023年超全前端面试题-背完稳稳拿offer(欢迎补充)

肥晨

三周年连更

SpringBoot如何使用Jetty容器?超级详细,建议收藏

bug菌

springboot jetty 三周年连更

PicConvert for mac:以批处理模式转换,调整大小和重命名图像

Rose

苹果软件资源 图片格式转换 PicConvert mac mac图片编辑

从多个数据源中提取数据进行ETL处理并导入数据仓库

海拥(haiyong.site)

三周年连更

Lambda 应用介绍及实现原理剖析

架构精进之路

Java 后端 Lamdba表达式 三周年连更

等保2.0来临,华为云助力企业更好应对等保合规

神奇视野

华为云安全建设安全云生态 保全企业运营安全

神奇视野

基于树莓派设计的音视频播放器(从0开始)

DS小龙哥

三周年连更

好家伙!阿里新产Java性能优化(终极版),涵盖性能优化所有操作

程序员小毕

数据库 性能优化 JVM 多线程 java面试

华为云数据灾备方案,为数据安全铸造铜墙铁壁

神奇视野

图计算引擎分析--GridGraph

京东科技开发者

系统 磁盘 图计算引擎 企业号 4 月 PK 榜 GridGraph

Java异常Exception详解

timerring

Java 三周年连更

一种面向后端的微服务低代码平台架构设计

京东科技开发者

架构 微服务 低代码 企业号 4 月 PK 榜

强大易用的矢量图形设计工具Sketch v96.1最新中文版

Rose

苹果软件下载 Sketch中文版 Sketch V96.1 mac图形设计工具

国产大模型研究论文入选AI顶会,智谱AI详解千亿基座问答模型 GLM-130B,其在准确性指标上与 GPT-3 相当_AI&大模型_刘燕_InfoQ精选文章