写点什么

用 AI 对抗 AI!教代码调戏深度学习算法生成的假视频

  • 2018-11-13
  • 本文字数:1893 字

    阅读完需:约 6 分钟

用AI对抗AI!教代码调戏深度学习算法生成的假视频

AI 前线导读: 写代码用 AI 调戏 AI,检测 AI 生成的虚假图片、视频?这现在已经成为可能了,因为能表征图片、视频的真假的特征很容易被检测出来。要怎么做呢?让我们一起来看看吧!


更多干货内容请关注微信公众号“AI 前线”(ID:ai-front)


随着 AI 的崛起,人们已经可以用深度学习算法生成越来越多以假乱真的图片和视频。这也激发了美国的学者们的研究热情:如何设计算法检测出网络上用 AI 生成假图片、假视频,即所谓的“deepfakes” 呢?


生成对抗网络(Generative Adversarial Networks,GANs)是进行虚假图片、视频“创作”的法宝。这类神经网络可以帮助研究者们生成人造数据集(相关文章), 用以在数据集不足的情况下训练人工智能算法。这类网络还可以协助艺术家进行肖像创作(相关文章)。


然而,和所有的技术一样,这项技术也有其不好的一面。比如,网络上的一些恶徒可以利用这项技术,将明星、前女友、政客或其他受害者的脸合成到色情明星的身体上。计算机合成结果会非常逼真,就像受害者真的在做限制级动作一样。而且,让人头疼的不只是淫秽影片那么简单。人们可以利用 AI 生成假的采访视频或个人声明,再配合上 AI 生成的声音(相关文章), 让人与人之间从此没有信任。


现在,人们可以稍微松口气了。博士生李跃尊(音译)和纽约州立大学奥尔巴尼分校的助理教授刘思伟(音译)提出了一种新技术,可以识别深度学习算法(如开源项目DeepFake FaceSwap算法)生成的假视频。


目前,深度学习生成的假视频对于人类来说还不是那么难辨认。伪造的视频一般比较奇怪,人的面部表情不是很自然,而且动作会有延迟、不顺畅。而且,伪造的视频一般会比原视频分辨率低。因此,人们应该能很快意识到自己看到了假视频。然而,由于生成假视频的技术仍在不断发展,未来最好能有一种技术可以识别出假视频里的特征,从而提醒观看假视频却没有意识到的人。

检测深度学习生成的假视频

用计算机检测假视频,之前的做法是用一些特征作为基准,比如观察视频中人的眨眼情况,从而判断视频真假。这一般需要先训练一个 GAN 网络,然后利用这个 GAN 网络来训练其他网络以检测视频真假。


李和刘的方法却并不依赖于 GAN 网络,因此运行时间更短、需要的算力更低。首先,他们使用了计算机视觉中的传统算法来检测 24,442 张训练图像,并提取其脸部关键点。然后,他们会弯折或扭曲图像中的人脸特征,来模拟 DeepFake 生成的假图片、视频中可能会出现的怪异效果。最后,他们用真实的和扭曲的图像训练了一些卷积神经网络(CNN)作为分类器,该分类器可以给出一个视频为真还是为假的概率。训练完成后,他们向这些卷积神经网络中输入视频的截图,就可以检测这些截图中的人脸到底是真的还是伪造的。


“我们观察到,现有的 DeepFake 算法只能生成出分辨率有限的图像,这些低分辨率图像要经过扭曲才能扩展到和来源视频一样的分辨率。我们的方法就是基于这个观察。”李和刘在本月发表的一篇论文中这样解释道。


“这种变换是 DeepFake 算法所造出的假视频中特有的,而且我们证明,这种变换很容易被卷积神经网络捕捉到。”


二人将前述方法用到了四个卷积神经网络中。训练集包含 49 个真实视频和 49 个 DeepFake 算法生成的假视频。每个视频作为一个独立的样本,时长约为 11 秒。所有视频共有 32,752 帧。


由英国的牛津大学的研究者开发的老牌卷积神经网络——VGG16,在假视频识别任务中表现最差(精度为 83.3%)。而更为流行的一个 CNN——微软的研究者们开发的 ResNet50,给出了高达 97.4%的精度。


ResNet50 的一些变种也表现得很好。ResNet101 和 ResNet152 给出了 95.4%和 93.8%的精度,分别位列第二和第三。在将 deepfake 假视频看作一个整体的情况下,ResNet101 表现最好(精度为 99.1%),ResNet50 次之(98.7%),紧接着是 ResNet152(97.8%),而 VGG16 最差(84.5%)。


虽然这种检测方法很有前途,但研究者们目前还没有给出非常有意义的实验结果——他们的实验只是在他们精心挑选的图像和视频数据集上做的。换句话说,研究者们还需要在更多真实世界中的 DeepFake 视频上做实验,才能进一步验证他们的算法。另外,随着 GAN 网络技术的进步,假视频的质量也进一步提高,恐怕以后这种假视频的检测方法会越来越不适用。


“随着 DeepFake 技术的不断进化,我们也会继续改进这种检测方法”——学者们允诺道。“首先,我们会将多视频压缩的问题考虑进去,继续验证和改进我们算法的鲁棒性。其次,我们现在仅使用了他人设计好的网络架构(如 resnet 和 VGG)。为追求更加高效的检测结果,我们会针对 DeepFake 视频检测任务设计专门的网络。”


原文链接:


https://www.theregister.co.uk/2018/11/06/fight_ai_deepfakes


2018-11-13 19:441751

评论

发布
暂无评论
发现更多内容

最有技术含量的面试

escray

面试 面经 七日更 十日谈

《数据分析》PDF免费下载

计算机与AI

数据分析

30G 上亿数据的超大文件,如何快速导入生产环境?

楼下小黑哥

Java MySQL 并发编程 线程池

Go中的Channel背后的设计哲学

soolaugust

Go Concurrency Patterns 七日更 CSP Go 语言

如何破解AI数据困境?京东智联云联邦学习平台有良方

京东科技开发者

人工智能 大数据 学习

XRP瑞波币系统软件开发|XRP瑞波币APP开发

系统开发

生产环境全链路压测建设历程 18:某快递 A 股上市公司的生产压测案例之中篇

数列科技杨德华

全链路压测 七日更

引领云原生发展浪潮 阿里云开启云原生大规模落地元年

阿里巴巴云原生

云计算 阿里巴巴 阿里云 最佳实践 云原生

Android uni-app实现音视频通话

anyRTC开发者

uni-app android 音视频 WebRTC 跨平台

JDK 16 即将发布,新特性速览!

xcbeyond

Java 七日更

世界之书:《禅与摩托车维修艺术》与发现良质

lidaobing

禅与摩托车维修艺术 28天写作

揭秘大流量场景下发布如丝般顺滑背后的原因

阿里巴巴中间件

阿里巴巴

夜莺二次开发指南-监控系统(2)

ning

滴滴夜莺 夜莺监控

揭开阿里巴巴复杂任务资源混合调度技术面纱

阿里巴巴云原生

云计算 阿里云 性能优化 云原生 资源调度

Nginx常见典型故障|Linux干货

赖猫

c++ nginx Linux

TypeScript | 第三章:函数、泛型和枚举

梁龙先森

typescript 编程 大前端 七日更

Serverless 落地之痛怎么解?

阿里巴巴中间件

Serverless

代码零改动Serverless架构升级?这家在线编程教育企业是这么做的

阿里巴巴中间件

Python Serverless

附PPT丨AWS基于数据湖构建云上的数据分析架构

dbaplus社群

数据湖 AWS

夜莺二次开发指南-监控系统(1)

ning

滴滴夜莺 夜莺监控

任务发布系统软件开发|任务发布APP开发

系统开发

wildfly 21的domain配置

程序那些事

程序那些事 wildfly wildfly21 配置管理 domain模式

12张图带你彻底理解分布式事务!!

冰河

分布式事务 BASE理论 TCC ACID CAP理论

Shell简介

入门小站

Shell

Spring Cloud 2020.0.0正式发布,再见了Netflix

YourBatman

Spring Cloud Spring Boot netflix 2020.0.0

手写线程池,对照学习ThreadPoolExecutor线程池实现原理!

小傅哥

Java 小傅哥 线程池 七日更 ThreadPoolExecutor

MySQL字符集修改实战教程

Simon

MySQL 字符集 七日更

单点破局思维|技术人应知的创新思维模型(8)

Alan

个人成长 技术人应知的创新思维模型 七日更 28天写作

如何在 20 分钟内给你的 K8s PaaS 上线一个新功能?

阿里巴巴云原生

阿里云 容器 运维 云原生

现代JavaScript:ES6+ 中的 Imports,Exports,Let,Const 和 Promise

葡萄城技术团队

Java ES6

语音助手中的复杂语义表达方法

DataFunTalk

AI nlp

用AI对抗AI!教代码调戏深度学习算法生成的假视频_AI&大模型_Katyanna Quach_InfoQ精选文章