写点什么

2018 年最受欢迎的 Python 库,你都用过吗?

  • 2018-12-20
  • 本文字数:2383 字

    阅读完需:约 8 分钟

2018年最受欢迎的Python库,你都用过吗?

AI 前线导读: 近日,数据科学网站 KDnuggets 评选出了顶级 Python 库 Top15,领域横跨数据科学、数据可视化、深度学习和机器学习。


和往常一样,我们需要你们的意见,如果你觉得项目没有上榜单是不公平的,或者对我们的选择有异议,请在评论求留言让我们知道。


更多干货内容请关注微信公众号“AI 前线”(ID:ai-front)



图 1:根据 GitHub star 和贡献评选出的 2018 顶级 Python 库。形状大小与贡献者数量成正比。

1 TensorFlow(贡献者:1757,贡献:25756,Stars:116765)

“TensorFlow 是一个使用数据流图进行数值计算的开源软件库。图形节点表示数学运算,而图形边缘表示在它们之间流动的多维数据阵列(张量)。这种灵活的体系结构使用户可以将计算部署到桌面、服务器或移动设备中的一个或多个 CPU/GPU,而无需重写代码。 ”


GitHub 地址:https://github.com/tensorflow/tensorflow

2 pandas(贡献者:1360,贡献:18441,Stars :17388)

“pandas 是一个 Python 包,、供快速,灵活和富有表现力的数据结构,旨在让”关系“或”标记“数据使用既简单又直观。它的目标是成为用 Python 进行实际,真实数据分析的基础高级构建块。”


GitHub 地址:https://github.com/pandas-dev/pandas

3 scikit-learn(贡献者:1218,贡献者:23509,Stars :32326)

“scikit-learn 是一个基于 NumPy,SciPy 和 matplotlib 的机器学习 Python 模块。它为数据挖掘和数据分析提供了简单而有效的工具。SKLearn 所有人都可用,并可在各种环境中重复使用。


GitHub 地址:https://github.com/scikit-learn/scikit-learn

4 PyTorch(贡献者:861,贡献:15362,Stars:22763)

“PyTorch 是一个 Python 包,提供两个高级功能:


  • 具有强大的 GPU 加速度的张量计算(如 NumPy)

  • 基于磁带的自动编程系统构建的深度神经网络


你可以重复使用自己喜欢的 Python 软件包,如 NumPy,SciPy 和 Cython,以便在需要时扩展 PyTorch。”


GitHub 地址:https://github.com/pytorch/pytorch

5 Matplotlib(贡献者:778,贡献:28094,Stars :8362)

“Matplotlib 是一个 Python 2D 绘图库,可以生成各种可用于出版品质的硬拷贝格式和跨平台交互式环境数据。Matplotlib 可用于 Python 脚本,Python 和 IPython shell(例如 MATLAB 或 Mathematica),Web 应用程序服务器和各种图形用户界面工具包。”


GitHub 地址:https://github.com/matplotlib/matplotlib

6 Keras(贡献者:856,贡者:4936,Stars :36450)

“Keras 是一个高级神经网络 API,用 Python 编写,能够在 TensorFlow,CNTK 或 Theano 之上运行。它旨在实现快速实验,能够以最小的延迟把想法变成结果,这是进行研究的关键。”


GitHub 地址:https://github.com/keras-team/keras

7 NumPy(贡献者:714,贡献:19399,Stars:9010)

“NumPy 是使用 Python 进行科学计算所需的基础包。它提供了强大的 N 维数组对象,复杂的(广播)功能,集成 C / C ++和 Fortran 代码的工具以及有用的线性代数,傅里叶变换和随机数功能。


GitHub 地址:https://github.com/numpy/numpy

8 SciPy(贡献者:676,贡献:20180,Stars:5188)

“SciPy(发音为”Sigh Pie“)是数学、科学和工程方向的开源软件,包含统计、优化、集成、线性代数、傅立叶变换、信号和图像处理、ODE 求解器等模块。”


GitHub 地址:https://github.com/scipy/scipy

9 Apache MXNet(贡献者:653,贡献:9060,Stars:15812)

“Apache MXNet(孵化)是一个深度学习框架,旨在提高效率和灵活性,让你可以混合符号和命令式编程,以最大限度地提高效率和生产力。 MXNet 的核心是一个动态依赖调度程序,可以动态地自动并行化符号和命令操作。”


GitHub 地址:https://github.com/apache/incubator-mxnet

10 Theano(贡献者:333,贡献:28060,Stars :8614)

“Theano 是一个 Python 库,让你可以有效地定义、优化和评估涉及多维数组的数学表达式。它可以使用 GPU 并实现有效的符号区分。”


GitHub 地址:https://github.com/Theano/Theano

11 Bokeh(贡献者:334,贡献:17395,Stars :8649)

“Bokeh 是一个用于 Python 的交互式可视化库,可以在现代 Web 浏览器中实现美观且有意义的数据视觉呈现。使用 Bokeh,你可以快速轻松地创建交互式图表、仪表板和数据应用程序。”


GitHub 地址:https://github.com/bokeh/bokeh

12 XGBoost(贡献者:335,贡献:3557,Stars:14389)

“XGBoost 是一个优化的分布式梯度增强库,旨在变得高效、强大、灵活和便携。它在 Gradient Boosting 框架下实现机器学习算法。XGBoost 提供了梯度提升决策树(也称为 GBDT,GBM),可以快速准确地解决许多数据科学问题,可以在主要的分布式环境(Hadoop,SGE,MPI)上运行相同的代码,并可以解决数十亿个示例之外的问题。”


GitHub 地址:https://github.com/dmlc/xgboost

13 Gensim(贡献者:301,贡献:3687,Stars :8295)

“Gensim 是一个用于主题建模、文档索引和大型语料库相似性检索的 Python 库,目标受众是自然语言处理(NLP)和信息检索(IR)社区。”


GitHub 地址:https://github.com/RaRe-Technologies/gensim

14 Scrapy(贡献者:297,贡献:6808,Stars :30507)

“Scrapy 是一种快速的高级 Web 爬行和 Web 抓取框架,用于抓取网站并从其页面中提取结构化数据。它可用于从数据挖掘到监控和自动化测试的各种用途。”


GitHub 地址:https://github.com/scrapy/scrapy

15 Caffe(贡献者:270,贡献:4152,Stars :26531)

“Caffe 是一个以表达、速度和模块化为基础的深度学习框架,由伯克利人工智能研究(BAIR)/伯克利视觉与学习中心(BVLC)和社区贡献者开发。”


GitHub 地址:https://github.com/BVLC/caffe


参考链接:


https://www.kdnuggets.com/2018/12/top-python-libraries-2018.html


2018-12-20 14:023868

评论 2 条评论

发布
用户头像
基本上都是科学计算这一类的
2018-12-21 16:44
回复
没有更多了
发现更多内容

实现高效数据同步:40 分钟内同步500GB MySQL 数据至 Doris

NineData

MySQL 数据库 Doris 数据迁移 数据实时同步

制造执行系统(MES)在汽车行业中的应用

万界星空科技

MES系统 汽车

DNAscope白皮书: 基于机器学习的高精度胚系变异检测流程

INSVAST

基因测序 基因数据分析

Sentieon DNAscope:适配多测序平台数据的快速精准分析流程

INSVAST

基因测序 基因数据分析 DNAscope

Sentieon|应用教程:利用Sentieon Python API引擎为自研算法加速

INSVAST

开源软件 基因测序 Python API

Sentieon | 应用教程: 关于读段组的建议

INSVAST

代码 教程 字段 基因测序

Sentieon | 每周文献-Liquid Biopsy(液体活检)-第十期

INSVAST

基因测序 液体活检 Liquid Biopsy

直播预告|没有 “专业” 的向量数据库,大模型就玩不转了吗?

Zilliz

非结构化数据 Milvus Zilliz AIGC 向量数据库

理解TiDB集群的P99计算方式

TiDB 社区干货传送门

数据库架构设计 应用适配

基因组大数据计算: CPU和GPU加速方案深度评测

INSVAST

基因测序 基因数据分析

一文了解新能源汽车中包含多少种芯片

华秋电子

英伟达 汽车

tidb数据库5.4.3和6.5.3版本性能测试对比

TiDB 社区干货传送门

版本测评 性能测评 6.x 实践

Android图片资源检测插件实现

java易二三

Java 程序员 计算机 插件 APK

使用Sentieon加速甲基化WGBS数据分析

INSVAST

基因测序 dna WGBS 甲基化

大数据平台安全主要是指什么安全?如何保障?

行云管家

大数据 数据 大数据平台 大数据平台安全

Sentieon | 每周文献-Long Read Sequencing(长读长测序)-第七期

INSVAST

基因测序 长读长测序 Long Read

Sentieon | 每周文献-Benchmark and Method Study(基准与方法研究)-第八期

INSVAST

基因测序 基因数据分析 基准与方法研究

TiDB 源码编译之 TiProxy 篇

TiDB 社区干货传送门

版本测评 新版本/特性解读 7.x 实践

揭秘 | RocketMQ文件清理机制~

java易二三

Java 程序员 计算机

生命数字化时代来临:全基因组计算成本不到1美元

INSVAST

基因测序 基因数据分析

Hap-eval:Sentieon开源的多测序平台SV精度评估工具

INSVAST

代码 基因测序 Hap-eval

靶向RNA-seq全面解决方案和加速分析,只看这篇就够了!

INSVAST

基因测序 基因数据分析 RNAseq

财务数智化十年“老兵”的六条财务共享中心建设体会

用友BIP

智能财务 财务共享

Sentieon | 每周文献-Multi-omics(多组学)-第九期

INSVAST

基因测序 Multi-omics 多组学

使用DWS集群,用户被锁定如何解锁

华为云开发者联盟

数据库 后端 华为云 华为云开发者联盟 企业号 8 月 PK 榜

2018年最受欢迎的Python库,你都用过吗?_数据库_Goutham Veeramachaneni_InfoQ精选文章