AICon 深圳站 Keynote 嘉宾官宣!共探AI价值转化的实践路径 了解详情
写点什么

2018 年最受欢迎的 Python 库,你都用过吗?

  • 2018-12-20
  • 本文字数:2383 字

    阅读完需:约 8 分钟

2018年最受欢迎的Python库,你都用过吗?

AI 前线导读: 近日,数据科学网站 KDnuggets 评选出了顶级 Python 库 Top15,领域横跨数据科学、数据可视化、深度学习和机器学习。


和往常一样,我们需要你们的意见,如果你觉得项目没有上榜单是不公平的,或者对我们的选择有异议,请在评论求留言让我们知道。


更多干货内容请关注微信公众号“AI 前线”(ID:ai-front)



图 1:根据 GitHub star 和贡献评选出的 2018 顶级 Python 库。形状大小与贡献者数量成正比。

1 TensorFlow(贡献者:1757,贡献:25756,Stars:116765)

“TensorFlow 是一个使用数据流图进行数值计算的开源软件库。图形节点表示数学运算,而图形边缘表示在它们之间流动的多维数据阵列(张量)。这种灵活的体系结构使用户可以将计算部署到桌面、服务器或移动设备中的一个或多个 CPU/GPU,而无需重写代码。 ”


GitHub 地址:https://github.com/tensorflow/tensorflow

2 pandas(贡献者:1360,贡献:18441,Stars :17388)

“pandas 是一个 Python 包,、供快速,灵活和富有表现力的数据结构,旨在让”关系“或”标记“数据使用既简单又直观。它的目标是成为用 Python 进行实际,真实数据分析的基础高级构建块。”


GitHub 地址:https://github.com/pandas-dev/pandas

3 scikit-learn(贡献者:1218,贡献者:23509,Stars :32326)

“scikit-learn 是一个基于 NumPy,SciPy 和 matplotlib 的机器学习 Python 模块。它为数据挖掘和数据分析提供了简单而有效的工具。SKLearn 所有人都可用,并可在各种环境中重复使用。


GitHub 地址:https://github.com/scikit-learn/scikit-learn

4 PyTorch(贡献者:861,贡献:15362,Stars:22763)

“PyTorch 是一个 Python 包,提供两个高级功能:


  • 具有强大的 GPU 加速度的张量计算(如 NumPy)

  • 基于磁带的自动编程系统构建的深度神经网络


你可以重复使用自己喜欢的 Python 软件包,如 NumPy,SciPy 和 Cython,以便在需要时扩展 PyTorch。”


GitHub 地址:https://github.com/pytorch/pytorch

5 Matplotlib(贡献者:778,贡献:28094,Stars :8362)

“Matplotlib 是一个 Python 2D 绘图库,可以生成各种可用于出版品质的硬拷贝格式和跨平台交互式环境数据。Matplotlib 可用于 Python 脚本,Python 和 IPython shell(例如 MATLAB 或 Mathematica),Web 应用程序服务器和各种图形用户界面工具包。”


GitHub 地址:https://github.com/matplotlib/matplotlib

6 Keras(贡献者:856,贡者:4936,Stars :36450)

“Keras 是一个高级神经网络 API,用 Python 编写,能够在 TensorFlow,CNTK 或 Theano 之上运行。它旨在实现快速实验,能够以最小的延迟把想法变成结果,这是进行研究的关键。”


GitHub 地址:https://github.com/keras-team/keras

7 NumPy(贡献者:714,贡献:19399,Stars:9010)

“NumPy 是使用 Python 进行科学计算所需的基础包。它提供了强大的 N 维数组对象,复杂的(广播)功能,集成 C / C ++和 Fortran 代码的工具以及有用的线性代数,傅里叶变换和随机数功能。


GitHub 地址:https://github.com/numpy/numpy

8 SciPy(贡献者:676,贡献:20180,Stars:5188)

“SciPy(发音为”Sigh Pie“)是数学、科学和工程方向的开源软件,包含统计、优化、集成、线性代数、傅立叶变换、信号和图像处理、ODE 求解器等模块。”


GitHub 地址:https://github.com/scipy/scipy

9 Apache MXNet(贡献者:653,贡献:9060,Stars:15812)

“Apache MXNet(孵化)是一个深度学习框架,旨在提高效率和灵活性,让你可以混合符号和命令式编程,以最大限度地提高效率和生产力。 MXNet 的核心是一个动态依赖调度程序,可以动态地自动并行化符号和命令操作。”


GitHub 地址:https://github.com/apache/incubator-mxnet

10 Theano(贡献者:333,贡献:28060,Stars :8614)

“Theano 是一个 Python 库,让你可以有效地定义、优化和评估涉及多维数组的数学表达式。它可以使用 GPU 并实现有效的符号区分。”


GitHub 地址:https://github.com/Theano/Theano

11 Bokeh(贡献者:334,贡献:17395,Stars :8649)

“Bokeh 是一个用于 Python 的交互式可视化库,可以在现代 Web 浏览器中实现美观且有意义的数据视觉呈现。使用 Bokeh,你可以快速轻松地创建交互式图表、仪表板和数据应用程序。”


GitHub 地址:https://github.com/bokeh/bokeh

12 XGBoost(贡献者:335,贡献:3557,Stars:14389)

“XGBoost 是一个优化的分布式梯度增强库,旨在变得高效、强大、灵活和便携。它在 Gradient Boosting 框架下实现机器学习算法。XGBoost 提供了梯度提升决策树(也称为 GBDT,GBM),可以快速准确地解决许多数据科学问题,可以在主要的分布式环境(Hadoop,SGE,MPI)上运行相同的代码,并可以解决数十亿个示例之外的问题。”


GitHub 地址:https://github.com/dmlc/xgboost

13 Gensim(贡献者:301,贡献:3687,Stars :8295)

“Gensim 是一个用于主题建模、文档索引和大型语料库相似性检索的 Python 库,目标受众是自然语言处理(NLP)和信息检索(IR)社区。”


GitHub 地址:https://github.com/RaRe-Technologies/gensim

14 Scrapy(贡献者:297,贡献:6808,Stars :30507)

“Scrapy 是一种快速的高级 Web 爬行和 Web 抓取框架,用于抓取网站并从其页面中提取结构化数据。它可用于从数据挖掘到监控和自动化测试的各种用途。”


GitHub 地址:https://github.com/scrapy/scrapy

15 Caffe(贡献者:270,贡献:4152,Stars :26531)

“Caffe 是一个以表达、速度和模块化为基础的深度学习框架,由伯克利人工智能研究(BAIR)/伯克利视觉与学习中心(BVLC)和社区贡献者开发。”


GitHub 地址:https://github.com/BVLC/caffe


参考链接:


https://www.kdnuggets.com/2018/12/top-python-libraries-2018.html


2018-12-20 14:023755

评论 2 条评论

发布
用户头像
基本上都是科学计算这一类的
2018-12-21 16:44
回复
没有更多了
发现更多内容

raft:分布式一致性算法笔记

TiDB 社区干货传送门

TiDB 底层架构

TiDB 优化之消失的统计信息

TiDB 社区干货传送门

实践案例

【文章】精选实践汇总1

TiDB 社区干货传送门

实践案例

某业务升级5.0解决慢SQL问题

TiDB 社区干货传送门

实践案例 故障排查/诊断

Flink + TiDB,体验实时数仓之美

TiDB 社区干货传送门

实践案例

一次热点问题排查经历

TiDB 社区干货传送门

故障排查/诊断

SQL只是CRUD?

TiDB 社区干货传送门

TiDB 底层架构

大教堂终将倒下,但集市永存

TiDB 社区干货传送门

实践案例 数据库架构选型

使用 TiDB 构建实时应用

TiDB 社区干货传送门

实践案例

实时 AP、分库分表、大数据应用,TiDB 在虎牙直播是怎么用的?

TiDB 社区干货传送门

实践案例

TiDB 多Socket 服务器性能扩展问题分析

TiDB 社区干货传送门

性能调优 性能测评

TUG 技术大咖圆桌讨论:如何评判一个数据架构的好坏

TiDB 社区干货传送门

数据库架构选型

通过 BR 完成不同 K8s 的 TiDB 集群的数据恢复

TiDB 社区干货传送门

故障排查/诊断

使用pd-recover 恢复pd 多数节点故障的场景

TiDB 社区干货传送门

管理与运维 故障排查/诊断

TiKV 集群部署 注意事项

TiDB 社区干货传送门

【文章】精选实践汇总2

TiDB 社区干货传送门

实践案例

端到端的实时计算:TiDB + Flink 最佳实践

TiDB 社区干货传送门

实践案例

5.0 新特性试用体验之 Clustered Index

TiDB 社区干货传送门

实践案例 TiDB 底层架构 版本测评 新版本/特性发布 性能测评

多种方式告诉你如何计算DM同步数据到TiDB的延时时间

TiDB 社区干货传送门

管理与运维

关于 TiDB 性能优化的一些思考

TiDB 社区干货传送门

性能调优

cdc 同步到 s3 的故障

TiDB 社区干货传送门

迁移 管理与运维 故障排查/诊断 新版本/特性发布

PD模块梳理

TiDB 社区干货传送门

TiDB 底层架构

【TiDB 最佳实践系列】开发 Java 应用使用 TiDB 的最佳实践

TiDB 社区干货传送门

实践案例

写冲突场景下的悲观/乐观事务模型选择

TiDB 社区干货传送门

实践案例

【TiDB 最佳实践系列】TiDB 高并发写入常见热点问题及规避方法

TiDB 社区干货传送门

实践案例

Chaos Mesh 助力 Apache APISIX 提升稳定性

TiDB 社区干货传送门

实践案例

如何在 TiDB 上高效运行序列号生成服务

TiDB 社区干货传送门

管理与运维

【TiDB DevCon 2020】金融专题论坛演讲视频汇总

TiDB 社区干货传送门

数据库选型中的非技术因素

TiDB 社区干货传送门

数据库架构选型

JQ 入门教程

TiDB 社区干货传送门

TiDB 底层架构

TiDB 集群的可用性详解及 TiKV Label 规划

TiDB 社区干货传送门

TiDB 底层架构

2018年最受欢迎的Python库,你都用过吗?_数据库_Goutham Veeramachaneni_InfoQ精选文章