写点什么

开源 OLAP 引擎综评:HAWQ、Presto、ClickHouse

  • 2020-06-21
  • 本文字数:3256 字

    阅读完需:约 11 分钟

开源OLAP引擎综评:HAWQ、Presto、ClickHouse

编者按

谈到大数据就会联想到 Hadoop、Spark 整个生态的技术栈。大家都知道开源大数据组件种类众多,其中开源 OLAP 引擎包含 Hive、SparkSQL、Presto、HAWQ、ClickHouse、Impala、Kylin 等。当前企业对大数据的研究与应用日趋理性,那么,如何根据业务特点,选择一个适合自身场景的查询引擎呢?

百分点在某国家级项目中承担了日增超 5000 亿级的数据处理与分析任务,集群的总数据量已接近百万亿。本报告结合百分点在项目中的业务场景,对 HAWQ、Presto、ClickHouse 做了综合评测,供大家参考。


一、测试整体方案

百分点面对的业务场景,主体是要解决超大规模数据集的 Ad-Hoc 查询问题,并且大多是单表查询场景。架构团队在此过程中选取了 HAWQ、Presto、ClickHouse 进行评测。评测中选取的数据集与 SQL 来自项目实际业务,我们需要评测维度主要如下:


A.数据在不同压缩格式下的压缩能力。


B.不同格式下的数据查询能力。


C.特定格式下的 HAWQ、Presto、ClickHouse 查询能力横向对比。

二、测试组件介绍

1.HAWQ

HAWQ 是 Hadoop 原生 SQL 查询引擎,结合了 MPP 数据库的关键技术优势和 Hadoop 的可扩展性、便捷性,以及 ANSI SQL 标准的支持;具有 MPP(大规模并行处理系统)的性能,比 Hadoop 生态圈里的其它 SQL 引擎快数倍;具有非常成熟的并行优化器等。

2.Presto

Presto 是一个分布式的查询引擎,本身并不存储数据,但是可以接入多种数据源,并且支持跨数据源的级联查询。Presto 是一个 OLAP 的工具,擅长对海量数据进行复杂的分析。但是,对于 OLTP 场景,并不是 Presto 所擅长,所以不要把 Presto 当做数据库来使用。


Presto 需要从其他数据源获取数据来进行运算分析,它可以连接多种数据源,包括 Hive、RDBMS(Mysql、Oracle、Tidb 等)、Kafka、MongoDB、Redis 等。

3.ClickHouse

ClickHouse 是“战斗民族”俄罗斯搜索巨头 Yandex 公司开源的一个极具"战斗力"的实时数据分析数据库,是面向 OLAP 的分布式列式 DBMS,圈内人戏称为“喀秋莎数据库”。ClickHouse 有一个简称"CK",与 Hadoop、Spark 这些巨无霸组件相比,ClickHouse 很轻量级,其特点包括:分布式、列式存储、异步复制、线性扩展、支持数据压缩和最终数据一致性,其数据量级在 PB 级别。

三 、测试环境

1.服务器硬件配置

大数据服务器:大数据网络增强型 d1ne


2.OLAP 引擎环境

  • HAWQ 环境



  • Presto 环境



  • ClickHouse 环境


3.测试数据


数据存放路径:/data1~12/iplog,一个盘 20G,6 台服务器每台都是 240G,一共 1440GB;每台服务器 12 个盘装载 4 个分区(小时)数据,每个盘装载 4 个分区的 1/12 的数据,4 个文件,每个文件大小 5G,2500w 条记录,一条记录 200Byte。

4.测试 SQL

测试挑选 4 个实际典型 SQL,大致如下:


四、测试过程

1.HAWQ 存储格式与性能评测

经过对比测试后,考虑数据的压缩比、数据的插入速度,以及查询时间这三个维度综合评估,我们的场景推荐 HAWQ 采用列式存储+Gzip5 的压缩方式;如果大家对压缩没有非常高的要求,可以按照测试的详细数据采用其它的组合方式。


HAWQ 压缩测试注意事项:只有当 orientation=parquet 的时候才能使用 gzip 进行压缩,orientation=row 的时候才能使用 zlib 进行压缩,snappy 不支持设置压缩级别。


详细的评测数据及图片展现如下文所示。


  • 行式存储与压缩


HAWQ 的插入方式是将数据写入 CSV 文件后,Load 到 HAWQ 表中。本次评测的是数据 Load 的过程和最终压缩比。可以发现,zlib 压缩级别到 5 以后,压缩比的降低就不那么明显了。


测试明细



结果图形展示




  • 行式存储查询性能


测试明细



结果图形展示



  • 列式存储与压缩


测试明细



结果图形展示




  • 列式存储查询性能


测试明细



结果图形展示


2.Presto 存储格式与性能评测

经过对比测试后,考虑数据的压缩比、数据的插入速度,以及查询时间这三个维度综合评估,我们的场景推荐 Presto 采用 LZ4+ORC 方式。这个结果也与各公司采用的格式一致。


  • 存储与压缩


测试方式,通过 CSV 文件 Load 到 Hive 表,原始数据总量为 1440GB。



  • 查询性能



3.查询对比测试:HAWQ vs Presto vs ClickHouse

通过对比测试结果可以发现,在相同的数据量查询 SQL 情况下,ClickHouse 对比 HAWQ、Presto 有数量级的性能优势。由于我们的业务更多是单表的 Ad-Hoc 查询和分析,因此本次评测最终采用 ClickHouse 作为我们的 OLAP 引擎。


同时,测试过程中我们也发现一些有意思的现象,如:


(1) HAWQ 对查询都是全表扫描,如类似 Select * from where c1=xxx limit 10 查询,而 Presto 则对扫描的结果直接返回。


(2) HAWQ 查询会使用到系统缓存,而 Presto 对这方面并没有特别的优化。表现出的现象就是,在一定的并发度下,HAWQ 反而会体现出缓存的优势,而 Presto 性能则呈现线性下降趋势。


详细见测试过程的详细记录及图形化的直观展现。


  • 并发 1 查询性能




  • 并发 10 查询性能




  • 并发 20 查询性能



4.其它扩展测试

  • Presto 单机多 Worker


我们通过添加单机的 Worker 数量验证是否提高查询效率,提高单机的查询利用率。


单机增加 Presto Worker,部署多 Worker。测试结果:表现为 CPU 瓶颈,没有效果。如下图,可以发现每个 Worker 的吞吐也少了一半。



  • Presto 扩容


我们通过添加扩容机器并部署 Worker,验证查询性能影响。


加入新的机器,部署 Worker。测试结果:表现为性能基本线性增长,受限于数据节点的磁盘 IO 和网络。



  • ClickHouse 横向扩展查询测试


测试横向扩展对查询性能的影响,每个节点的数据量是相同的,使用相同的 SQL 分别测试单节点、五节点、十节点的查询性能。


根据测试结果可以看出,横向扩展后,节点数和数据量等比增加,查询时间几乎保持不变。所以对于 ClickHouse 我们可以基于单节点的数据量和性能,推断一定场景下整个集群的情况。


测试明细



结果图形展示



  • ClickHouse PageCache 缓存查询测试:


测试 PageCache 对查询性能的影响,首先清除所有缓存分别查询四个 SQL,然后再重复执行一次,可以发现,PageCache 对第二次查询的性能提高是影响巨大的。


ClickHouse 充分利用了系统缓存(PageCache),对查询有数量级的性能提升作用。


测试明细



结果图形展示


五、各组件综合分析

通过上述测试结果和分析图表,结合我们查询各组件的开源介绍进行综合分析,如下:


HAWQ 采用基于成本的 SQL 查询优化器,生成执行计划;同时在标准化 SQL 兼容性这方面表现突出(基于 TPC-DS 进行 SQL 兼容性测试)。数据存储直接使用 HDFS,与其它 SQL on Hadoop 引擎不一样,HAWQ 采用自己的数据模型及存储方式。在本次对单表的查询测试中,性能并不理想,并且我们发现对于表查询类似 limit 1 语句。HAWQ 也会全表扫描,这个过程让我们感觉有点诧异。


Presto 的综合能力对比其他 SQLon Hadoop 引擎还是比较突出的。我们在测试过程中发现,单节点的扫描速度达 5000WRow/S。Presto 是完全基于内存的并行计算,对内存有一定的要求。只装载数据到内存一次,其他都是通过内存、网络 IO 来处理,所以在慢速网络下是不适合的,所以它对网络要求也是很高。Presto 只是查询引擎,不负责数据的底层持久化、装载策略。Presto 支持丰富的多数据源,可跨多个数据源查询。另外,在我们测试的版本上没有本地数据读取优化策略,开源社区里在新版本上是支持的。


ClickHouse 作为战斗民族的开源神器,是目前所有开源 MPP 计算框架中速度最快的。对比测试的结果表明,ClickHouse 在单表的查询中性能十分优异。对多表的关联分析场景,查询其他报告并不十分理想,本次测试并不涉及,不做评论。ClickHouse 性能很大程度上依赖于系统缓存。对完全非缓存,进行磁盘扫描的场景,性能也不是十分突出,二者也有数量级的性能差距。这也是我们在使用过程中的优化点。


最后,以上采用 MPP 架构的 OLAP 引擎,随着并发的提高,查询性能都出现了线性下降,Presto 在这个问题上的尤为明显。CK 由于单次查询速度快,所以一定程度上掩盖了这个问题。因此,大家在未来的业务中进行 OLAP 评估时,也需要将并发作为一个重要的考虑因素。


本文转载自公众号百分点(ID:baifendian_com)。


原文链接


https://mp.weixin.qq.com/s/XpuUr00kMagU_jrXiDu-6g


2020-06-21 14:048112

评论

发布
暂无评论
发现更多内容

架构实战营-设计消息队列存储消息数据的 MySQL 表格

Nullrable

架构实战

重置云服务器系统

坚果

云服务器 11月日更

老友(研发岗)被裁后,想加盟小吃店,我用Python采集了一点数据,多少是个心意

梦想橡皮擦

11月日更

【死磕Java并发】—–深入分析volatile的实现原理

chenssy

11月日更 死磕 Java 死磕 Java 并发

构建数据网格分布式架构的四项原则

俞凡

架构 数据

架构实战营-模块6作业

Nullrable

架构实战营

腾讯云数据库TDSQL已助力20余家金融机构完成核心系统替换 即将进入规模化复制阶段

科技热闻

如何提升口头表达能力?

石云升

表达 11月日更

值得收藏的 Eureka 控制台详解

悟空聊架构

Eureka 源码解析 注册中心 悟空聊架构 11月日更

【Flutter 专题】17 图解 ListView 下拉刷新与上拉加载 (二)【NotificationListener】

阿策小和尚

Flutter 小菜 0 基础学习 Flutter Android 小菜鸟 11月日更

使用Eclipse开发Java应用并部署到SAP云平台SCP上去

汪子熙

Cloud SAP 11月日更 sap开发

【设计模式】第十二篇 - 桥接模式 - 露娜的召唤师技能

Brave

设计模式 桥接模式 11月日更

智+人:在云端重塑一场认知革命

脑极体

思科基本网络连接与IOS的基本操作 「网络工程师之路」

Regan Yue

网络工程师 11月日更 思科 网络工程

记录渗透靶场实战【网络安全】

网络安全学海

网络安全 信息安全 渗透测试 WEB安全 安全漏洞

dart系列之:dart语言中的变量

程序那些事

flutter dart 程序那些事 11月日更

绝佳的录屏编辑神器,一款走遍天下!!

淋雨

Camtasia

iOS开发:报错‘Unknown class ViewController in Interface Builder file’解决方法

三掌柜

11月日更

MacBook 搭建VUE3开发环境

IT蜗壳-Tango

11月日更

Vue进阶(幺陆柒):Vue 项目调试技能

No Silver Bullet

Vue 11月日更

【高并发】明明中断了线程,却为何不起作用呢?

冰河

并发编程 多线程 高并发 异步编程 Java Concurrency

Redis 高可用篇:图解 Redis 哨兵集群原理

码哥字节

redis redis sentinel NoSQL 数据库 11月日更

thanos-io/thanos-CONTRIBUTING.md

卓丁

Prometheus Thanos thanos.io Contributing github Contributing

架构实战营-模块三

瓜子葫芦侠

「架构实战营」

rabbitmq简介

小鲍侃java

11月日更

软件测试高效学习方法

程序员阿沐

学习方法 程序员 互联网 软件测试 计算机

与德勤论道企业数字化战略到落地

大咖说

云计算 数字化转型 数字化 企业上云 阿里云;

《Linux一学就会》第一章第二节:学习环境搭建

侠盗安全

Linux linux运维 云计算架构师 linux电子书

SAP云平台里Global Account和Sub Account的关系

汪子熙

Cloud SAP CloudFoundry 11月日更

Groovy中的元组

FunTester

测试开发 元组 Groovy FunTester tuple

前端开发工具之Mock.js

Augus

11月日更

开源OLAP引擎综评:HAWQ、Presto、ClickHouse_大数据_百分点科技技术团队_InfoQ精选文章