如何 0 成本启动全员 AI 技能提升?戳> 了解详情
写点什么

使用 Kafka,如何成功迁移 SQL 数据库中超过 20 亿条记录?

  • 2021-01-07
  • 本文字数:2150 字

    阅读完需:约 7 分钟

使用Kafka,如何成功迁移SQL数据库中超过20亿条记录?

我们的一个客户遇到了一个 MySQL 问题,他们有一张大表,这张表有 20 多亿条记录,而且还在不断增加。如果不更换基础设施,就有磁盘空间被耗尽的风险,最终可能会破坏整个应用程序。而且,这么大的表还存在其他问题:糟糕的查询性能、糟糕的模式设计,因为记录太多而找不到简单的方法来进行数据分析。我们希望有这么一个解决方案,既能解决这些问题,又不需要引入高成本的维护时间窗口,导致应用程序无法运行以及客户无法使用系统。在这篇文章中,我将介绍我们的解决方案,但我还想提醒一下,这并不是一个建议:不同的情况需要不同的解决方案,不过也许有人可以从我们的解决方案中得到一些有价值的见解。

云解决方案会是解药吗?


在评估了几个备选解决方案之后,我们决定将数据迁移到云端,我们选择了 Google Big Query。我们之所以选择它,是因为我们的客户更喜欢谷歌的云解决方案,他们的数据具有结构化和可分析的特点,而且不要求低延迟,所以 BigQuery 似乎是一个完美的选择。经过测试,我们确信 Big Query 是一个足够好的解决方案,能够满足客户的需求,让他们能够使用分析工具,可以在几秒钟内进行数据分析。但是,正如你可能已经知道的那样,对 BigQuery 进行大量查询可能会产生很大的开销,因此我们希望避免直接通过应用程序进行查询,我们只将 BigQuery 作为分析和备份工具。



将数据流到云端


说到流式传输数据,有很多方法可以实现,我们选择了非常简单的方法。我们使用了 Kafka,因为我们已经在项目中广泛使用它了,所以不需要再引入其他的解决方案。Kafka 给了我们另一个优势——我们可以将所有的数据推到 Kafka 上,并保留一段时间,然后再将它们传输到目的地,不会给 MySQL 集群增加很大的负载。如果 BigQuery 引入失败(比如执行请求查询的成本太高或太困难),这个办法为我们提供了某种退路。这是一个重要的决定,它给我们带来了很多好处,而开销很小。

将数据从 MySQL 流到 Kafka


关于如何将数据从 MySQL 流到 Kafka,你可能会想到 Debezium(https://debezium.io)或 Kafka Connect。这两种解决方案都是很好的选择,但在我们的案例中,我们没有办法使用它们。MySQL 服务器版本太老了,Debezium 不支持,升级 MySQL 升级也不是办法。我们也不能使用 Kafka Connect,因为表中缺少自增列,Kafka Connect 就没办法保证在传输数据时不丢失数据。我们知道有可能可以使用时间戳,但这种方法有可能会丢失部分数据,因为 Kafka 查询数据时使用的时间戳精度低于表列中定义的精度。当然,这两种解决方案都很好,如果在你的项目中使用它们不会导致冲突,我推荐使用它们将数据库里的数据流到 Kafka。在我们的案例中,我们需要开发一个简单的 Kafka 生产者,它负责查询数据,并保证不丢失数据,然后将数据流到 Kafka,以及另一个消费者,它负责将数据发送到 BigQuery,如下图所示。



将数据流到 BigQuery


通过分区来回收存储空间


我们将所有数据流到 Kafka(为了减少负载,我们使用了数据过滤),然后再将数据流到 BigQuery,这帮我们解决了查询性能问题,让我们可以在几秒钟内分析大量数据,但空间问题仍然存在。我们想设计一个解决方案,既能解决现在的问题,又能在将来方便使用。我们为数据表准备了新的 schema,使用序列 ID 作为主键,并将数据按月份进行分区。对大表进行分区,我们就能够备份旧分区,并在不再需要这些分区时将其删除,回收一些空间。因此,我们用新 schema 创建了新表,并使用来自 Kafka 的数据来填充新的分区表。在迁移了所有记录之后,我们部署了新版本的应用程序,它向新表进行插入,并删除了旧表,以便回收空间。当然,为了将旧数据迁移到新表中,你需要有足够的空闲可用空间。不过,在我们的案例中,我们在迁移过程中不断地备份和删除旧分区,确保有足够的空间来存储新数据。



将数据流到分区表中


通过整理数据来回收存储空间


在将数据流到 BigQuery 之后,我们就可以轻松地对整个数据集进行分析,并验证一些新的想法,比如减少数据库中表所占用的空间。其中一个想法是验证不同类型的数据是如何在表中分布的。后来发现,几乎 90%的数据是没有必要存在的,所以我们决定对数据进行整理。我开发了一个新的 Kafka 消费者,它将过滤掉不需要的记录,并将需要留下的记录插入到另一张表。我们把它叫作整理表,如下所示。



经过整理,类型 A 和 B 被过滤掉了:




将数据流入新表


整理好数据之后,我们更新了应用程序,让它从新的整理表读取数据。我们继续将数据写入之前所说的分区表,Kafka 不断地从这个表将数据推到整理表中。正如你所看到的,我们通过上述的解决方案解决了客户所面临的问题。因为使用了分区,存储空间不再是个问题,数据整理和索引解决了应用程序的一些查询性能问题。最后,我们将所有数据流到云端,让我们的客户能够轻松对所有数据进行分析。由于我们只对特定的分析查询使用 BigQuery,而来自用户其他应用程序的相关查询仍然由 MySQL 服务器处理,所以开销并不会很高。另一点很重要的是,所有这些都是在没有停机的情况下完成的,因此客户不会受到影响。

总结


总的来说,我们使用 Kafka 将数据流到 BigQuery。因为将所有的数据都推到了 Kafka,我们有了足够的空间来开发其他的解决方案,这样我们就可以为我们的客户解决重要的问题,而不需要担心会出错。


原文链接:

https://blog.softwaremill.com/our-way-of-dealing-with-more-than-2-billion-records-in-sql-database-99deaff0d31


2021-01-07 11:522382

评论

发布
暂无评论
发现更多内容

这个API文档,太拽了吧!

Liam

前端 Postman API API文档 开放api

玩转云端|一文读懂天翼云CDN升级重点

天翼云开发者社区

博云容器云产品族:如何实现让“Any APP on Any Kubernetes”?

BoCloud博云

云原生 容器云

InfoQ 极客传媒 15 周年庆征文|一文读懂分布式系统本质:高吞吐、高可用、可扩展

No Silver Bullet

架构 分布式系统 可扩展 6月月更 InfoQ极客传媒15周年庆

5G+实时云渲染:交互实时云看车革新购车体验

3DCAT实时渲染

5G 汽车之家 汽车 元宇宙 实时云渲染

leetcode 417. Pacific Atlantic Water Flow 太平洋大西洋水流问题

okokabcd

LeetCode 搜索 数据结构与算法

使用 LakeSoul 构建实时机器学习样本库

Geek_a02d1e

机器学习 大数据 开源 新基建 湖仓一体

函数节流和函数防抖和他们的区别

工边页字

JavaScript 性能优化 前端 6月月更

直播回顾 | 7000字干货,深析区块链+汽车供应链金融的应用价值

旺链科技

区块链 产业区块链 供应链金融

龙蜥开发者说:不忘初心,方得始终 | 第 7 期

OpenAnolis小助手

开源 cpu 龙蜥开发者说 飞腾 不忘初心

【高并发】在高并发环境下该如何构建应用级缓存?

冰河

并发编程 多线程 高并发 异步编程 6月月更

当AI抄起了水表

华为云开发者联盟

人工智能 modelarts workflow 智能水务

移动平台打造新生态 | 助力企业跨业务、一站式、全场景的系统建设

BeeWorks

一篇文章带你彻底了解哈希表

武师叔

算法 哈希表 6月月更

数字先锋| 天翼云牵手中能融合

天翼云开发者社区

撑算力之帆,天翼云助力数字时代逐潮者远航

天翼云开发者社区

AI“爷青回”:一键找回童年记忆

最新动态

选择天翼云混合云管理平台的五大理由

天翼云开发者社区

天猫精灵语音技能单轮对话表达式的参数定义

汪子熙

人工智能 机器学习 聊天机器人 机器人 6月月更

华为云GaussDB首席架构师冯柯:摘取皇冠上的明珠,华为云数据库的创新与探索

华为云开发者联盟

数据库 华为云 GaussDB 国产数据库

2022年中国新能源汽车换电市场发展洞察

易观分析

新能源汽车

【Spring 学习笔记(一)】第一个Spring程序与IoC思想

倔强的牛角

6月月更

应用流程挖掘,发现潜在RPA可实施的场景,助力银行优化业务流程

易观分析

RPA

【云服务器】云计算平台的架构是什么样的?

Finovy Cloud

云服务器 GPU服务器

哈希游戏开发竞猜系统哈希值hash算法

薇電13242772558

哈希算法

多模态语义检索 | 基于 MetaSpore 快速部署 HuggingFace 预训练模型

Geek_a02d1e

机器学习 深度学习 开源 AI 多模态

Flutter 图片库重磅开源!

阿里巴巴终端技术

flutter 开源 native 客户端

样品管理系统解决方案

低代码小观

Lims LIMS实验室信息管理系统 LIMS系统

【LeetCode】 删除二叉搜索树中的节点Java题解

Albert

LeetCode 6月月更

Java 中三大类数据类型

迷篱

科创人·神州数码集团CIO沈旸:最佳实践模式正在失灵,开源加速分布式创新

科创人

使用Kafka,如何成功迁移SQL数据库中超过20亿条记录?_软件工程_Kamil Charłampowicz_InfoQ精选文章