2天时间,聊今年最热的 Agent、上下文工程、AI 产品创新等话题。2025 年最后一场~ 了解详情
写点什么

非科班出身,25 岁开始学 AI,晚吗?

  • 2019-09-01
  • 本文字数:3545 字

    阅读完需:约 12 分钟

非科班出身,25岁开始学AI,晚吗?

近日,Reddit 论坛的 AI 板块上,有一位年轻人发帖提问:如何才能实现我成为AI工程师的理想?


由于家庭的原因,他没能完成自己的大学学业,按照他的个人描述,目前他似乎正在从事着服务行业相关的工作,但是他心中对于成为 AI 工程师的一团火一直没有熄灭,所以他来到论坛求助,希望能够得到专业人士的建议。


他的问题得到了不少 AI 从业者的关注,大家纷纷献计献策鼓励他继续走下去,InfoQ 对这些回答进行了筛选与整理,如果你也有同样的梦想,不如看看这篇文章,或许能够给你一些启发。

提问者言:我有一个梦想

如标题所言,我有一个梦想。我一直以来就希望投身人工智能领域,但由于家庭原因,我没能拥有自己的学术生涯。现在我 25 岁了,我厌倦了服务行业工作,这样的工作让我毫无成就感——除了看书和翻翻博客之外,我没有任何有意义的事可做。


最近,我辞掉了工作,开始专心学习。


我目前面对着两条有望指引自己通向梦想彼岸的道路:


1) 考进大学,攻读博士学位


很直接,但也非常困难。我需要参加入学考试,必须面对自己几乎为零的知识基础,也得不到任何有意义的支持。另外,就算是考进了大学,我的生活也有问题,而且可能再面对十年以上的贫困生活。虽然我并不介意贫困的生活,但我希望了解是否还有更多更好的选择。


2) 自学编程以及其它相关技术(数学等等),并尝试在行业内寻找工作


任何工作都可以,包括软件工程师或者开发者职位。真的,只要跟 AI 有一点关联的都行。在获得工作之后我会继续学习,并利用一切机会克服种种障碍。通过博客、社区活动以及交互等方式为问题提供创造性的解决方案。这基本上就是通过实际表现为自己树立名声,并努力借此争取研究职位。这个选项更好,我能赚到钱、能积累到实践经验、能够立刻激发自己的兴趣点,而且不至于为其它事情所分神。只是,我也不知道这样是否可行。


现在我的问题是:


a.) 第二条道路可行吗?(没有博士学位的我真的有机会获得研究岗位吗?)


b.) 还有其它选择吗?


c.) 你们会推荐哪些道路?为什么?


感谢大家抽出宝贵时间阅读本文。感谢你们给出的任何答案与指导。


补充:可能我说得不够清楚。在第 1 种选项当中,我需要参加入学考试,基本就是高中水平的考试,主要科目包括数学、物理和化学。我承担不起预备课程(太贵了),所以我打算花一年左右的时间自学并为这些内容做好准备。在这段时间里,我恐怕没办法把精力放在工作或者其它技能的培养上。至少我觉得可能性不大。

回答者说:什么时候开始都不算晚

回复 1:


我对机器学习学术领域并不熟悉,这里只想跟你谈谈第 1 个选项。这确实可行,因为你拥有工作经验,这意味着即使同样进行大学学习,你在动机、时间管理、现实目标、软技能等方面都高于 95%的普通大学生。25 岁还不晚,上大学还完全来得及


回复 2:


读博士这目标定得有点太远了,不妨一步步走起。先定一个比较可行的目标,并在明年之内步入正轨。你之前提到的那种孤注一掷的方式既没必要,也有点不切实际。


你肯定也清楚,不是每个人都适合成为开发人员或者在 IT 部门工作,不然怎么会有那么多人在工作几年之后彻底离开这个行业呢。万一,你也属于这样的情况,该怎么办?


我认为首要任务应该是了解情况,确定你真的很喜欢也很适合从事这方面工作。


那种技术训练营的短期培训课程是进军科技行业的最快方式,但局限性也很强。突击培训出来的人员,很难在求职当中与具备传统教育背景的求职者竞争。


先拿下计算机科学学位吧,很多学校现在也提供数据科学相关专业。


可能有些人会反对我的意见,但是在本科毕业之后,你可以至少先花一年感受一下行业里的工作氛围。真正的工作与学术研究完全不同,这段经历会帮助你获得所学习内容的使用背景,并教会你很多无法在学校里掌握的实践技能(包括版本控制、开发环境、CI/CD、生产部署、云托管、办公室政治以及软技能等等)。


接下来,你就可以更有信心地决定自己是不是要继续进修了。确定之后,你可以考取硕士学位,而且在具体的专业和导师选择方面,你一定会更了解自己的学习方向和未来职业规划。


整个过程大概需要 4 年到 8 年。到那时,你在数据行业中的定位将得到显著改善。其实你不需要读完博士,也能顺利进入企业工作。在工作一段时间后,你可以更肯定自己对现有工作满不满意,以及有没有必要继续攻读博士。(抱歉我可能给你泼了点冷水,但大多数人会发现自己没有必要读博。)


这是一条更加现实的道路,远比“我打算花十年时间攻读博士,然后从事机器学习行业”靠谱得多。


回复 3:


就算选第 1 种方案,你也不一定要忍受长达十年的贫困生活。如果你没有夸大自己的情况,那么你完全可以在入学时申请奖学金;只要努力学习并且取得理想的成绩,你就可以继续申请足以支持自己学业和生活的奖学金。特别是在研究生阶段,奖学金的选择就更丰富了。一旦掌握了一定程度的知识,你也可以选择带薪实习以及兼职工作。


第 2 种选项也是可行的,但从职业角度来看难度更大。**没有学历证明,你的职业选择可能受到严重限制——这就是酷的现实。**如果你希望进入研究领域,这方面限制因素会变得更多,你可能最终还是得回归校园,或者采取兼职以及在线学习等方式才能践行自己的终极梦想。这是一条既需要技能、又需要运气的复杂道路,而结果永远充满不确定性。


如果是我,我会先申请奖学金。如果申请成功,那我认为第 1 种选项最简单。如果运气不好,那么你就要对自己的财务状况进行评估,并确定到底要选第 1 种还是第 2 种选项。


总之,咱们的目标是找到一个能让自己并行完成工作与学业的角色,这是种权衡——工作的收入不能太差,但也不能太好,因为过于优渥的生活会让你失去奋斗的动力。同样的情况在研究领域也是一样,收入既要够支撑你的开销,又不能严重影响你的判断。继续沿着这两条道路并行走下去,直到某一条路上出现正确的机遇。即使机遇没能出现,你在几年之后也将积累下丰富的工作经验与教育背景,这将使你成为一名极具竞争力的求职者。


回复 4:


虽然我非常认同自学这种方法,也相信这会是未来的主要学习途径——特别是考虑到互联网上已经出现大量优质的内容,但面对你的问题,我认为第 1 种选项更好。具体原因如下:


  1. 企业非常关心教育背景,特别是在 ML/AI 领域。他们对学历的要求非常高,所以除非你能够拿出极具吸引力的出色项目,否则很难与其他教育背景良好的求职者竞争。企业关注的可不是那些小型个人项目,而是专业环境下的大规模项目。根据我的个人经验,第一份入门工作真的非常难找。

  2. 就我所知,像 Triplebyte 这类企业仍然不设 AI/ML 门槛。测试实际上是最友好的考查方式,有些企业在求职者完成测试之前甚至不会询问教育背景——毕竟能力才是最重要的,正规教育背景只是个参考。这显然更适合你。

  3. AI/ML 个人项目通常需要利用昂贵的硬件训练模型,处理大量数据同样需要付出可观的成本。

  4.  

  5. 4)正如其他朋友所言,在学校里你才能拥有足够的时间深入而透彻地开展研究,特别是在硕士与博士学习期间。你可以获得奖学金与助学金,甚至能够根据需要申请一些助学贷款。你未来的工资可能会高到足以轻松还款。另外,我觉得计算机科学专业在你博士期间提供的津贴,也要高于平均水平。

  6.  

  7. 这只是我的个人观点,也许有说得不准确的地方,仅供参考。

  8.  

  9. 回复 5:

  10.  

  11. 你好!我是斯坦福大学的 AI 博士,以下我的一些观点:

  12.  

  13. a) 第 2 个选项是没有问题的,你可以参考这条推文和回复:https://twitter.com/chipro/status/1154260773062889473

  14.  

  15. 你只需要获得硕士学位就可以继续做学术研究,或者是直接在企业中获得在职进修支持(谷歌、微软、Facebook 等很多行业实验室都提供这类选项)。但正如以上推文所提到,这对你的自学能力以及技能组合要求非常高。

  16.  

  17. b) 考取硕士学位(无论是名校还是普通高校)都是个不错的选择!你可以参考以下链接获取与学业相关的细节信息:

  18.  

  19. http://www.omscs.gatech.edu/

  20.  

  21. https://datascience.berkeley.edu/

  22.  

  23. 这些你在兼职工作的时候就能看,不用怕。虽然这些内容跟博士入学考试一样,但其实并没什么大不了——你不需要像真的高考那样掌握物理或者化学知识。这里我推荐 Magoosh,可以说是备考的最佳选择了: https://gre.magoosh.com/

  24.  

  25. c) 我个人更推荐第 2 个选项。因为如果没有任何实践经验,你可能根本无法正确地判断自己要学些什么(你的想法与实际情况可能存在着巨大的差别)。因此,你最好是先积累一些经验,对目标学科建立起结构化的认知,然后再尝试攻读博士学位。在此之后,你可以进一步考虑自己想做的是 ML 工程师、面向 AI 的企业软件开发人员、研究员还是别的什么。我是通过自己的硕士阶段逐步解决这些问题的,也建议大家试一试。最后,博士学位更多来自推荐信和你发表的论文,入学考试成绩反倒不那么重要。所以你最好是先从硕士读起,后面的事情都将水到渠成。


2019-09-01 08:004350

评论

发布
暂无评论
发现更多内容

别让非理性思维毁了你的人生

看山

随笔杂谈 非理性 认知偏差 自控术

解析中美数字货币竞争战略 | 构建属于“人类命运共同体”的货币体系

CECBC

数字货币 人民币

Kafka和RocketMQ底层存储之那些你不知道的事

yes

kafka RocketMQ 零拷贝 Mmap

你可能不知道的iPython使用技巧

wangkx

Python

DSN 主流项目调研 2——Sia和SAFE Network

AIbot

区块链 分布式存储 分布式文件存储 Sia SAFENetwork

奋斗在一线大城市的年轻人的生活工作实录(工厂蓝领篇)

Learun

程序员 软件开发 故事 企业信息化 短片小说

《深度工作》学习笔记(完)

石云升

读书笔记 时间管理 专注 深度工作

我国开启“逆袭战”,区块链的盛夏来了?

CECBC

云计算 区块链技术

流媒体云时代的声与色,融云铺就的桥与路

脑极体

网站域名备案怎么做?有哪些快速备案的方法?

姜奋斗

网站 备案 网站搭建 域名解析 网站平台

美丑平等

shengjk1

随笔杂谈

普通工程师简史

郭华

你看脸吗?

shengjk1

随笔杂谈

浅析Python中的列表和元组

wangkx

Python python升级

手抖了

shengjk1

随笔杂谈

JAVA位运算

彭阿三

Java 位运算

LeetCode题解:88. 合并两个有序数组,for循环合并数组+sort排序,JavaScript,详细注释

Lee Chen

大前端 LeetCode

低/零代码会让程序员失业吗?

代码制造者

程序员 低代码 零代码 信息化 编程开发

一文搞懂Flink rocksdb中的数据恢复

shengjk1

大数据 flink源码

每个大火的“线上狼人杀”平台,都离不开这个新功能

ZEGO即构

游戏 RTC 社交

关于微服务架构的一些思考

俊俊哥

微服务

SpringBoot系列(三):SpringBoot特性_SpringApplication类(自定义Banner)

xcbeyond

Java 微服务 springboot Banner

DSN 主流项目调研 3——Orbit数据库的故事

AIbot

区块链 分布式存储 IPFS 分布式文件 Orbit

Cobra 命令自动补全指北

郭旭东

cobra Go 语言

害怕

shengjk1

随笔杂谈

Django查看操作数据库的执行命令

BigYoung

数据库 django 操作

易观CTO郭炜:如何构建企业级大数据Ad-hoc查询引擎

易观大数据

流量明星翻车的“直播卖房”,为什么众盟做成了?

脑极体

熬得住,人生路

shengjk1

随笔杂谈

数据平台、大数据平台、数据中台……你确定能分得清吗?

华为云开发者联盟

大数据 数据中台 开发者 数据湖 数据

SpringBoot系列(二):如何灵活使用SpringBoot

xcbeyond

Java 微服务 springboot

非科班出身,25岁开始学AI,晚吗?_AI&大模型_Reddit_InfoQ精选文章