写点什么

谷歌开源监督式说话人分类算法,准确率高达 92.4%

  • 2018-11-13
  • 本文字数:1458 字

    阅读完需:约 5 分钟

谷歌开源监督式说话人分类算法,准确率高达92.4%

AI 前线导读: 说话人分类,即从包含多个说话人声音的音频流中,单独将每个人的音频划分到同一类别下的过程,是语音识别系统的重要部分。通过解决“谁在何时说话”的问题,说话人分类可以应用于许多重要场景,例如理解医疗对话、视频字幕等。


然而,使用监督学习方法训练这些系统具有很大的挑战性。与标准监督分类任务不同,一个强大的分类模型需要能够让新加入的,训练中没有的语音片段产生相关性。重要的是,这限制了线上和离线分类系统的质量。在线系统通常受到的影响更大,因为它们需要实时地分类结果。


更多干货内容请关注微信公众号“AI 前线”(ID:ai-front)



(线上流式音频输入说话人分类。底部轴的不同颜色表示不同的说话人。)


《完全监督说话人分类》一文中,我们描述了一种新模型,能以更有效的方式使用监督式说话人标签。这里的“完全”意味着说话人分类系统中的所有组成部分,包括说话人数量预估,都进行了监督式训练,以便它们可以从可用的标记数据增加中受益。在 NIST SRE 2000 CALLHOME 基准测试中,我们的分类错误率(DER)低至 7.6%,而之前基于聚类的方法错误率为 8.8%,深度神经网络嵌入方法的错误率为 9.9%。


此外,我们的方法基于在线解码实现了较低的错误率,特别适用于实时应用场景。我们开源了本文提到的核心算法,以加速此方向的更多研究。

聚类算法 VS 交织状 RNN

现代说话人分类系统通常基于聚类算法,例如 k 均值或谱聚类。由于这些聚类方法是无监督的,因此无法充分利用数据中可用的监督式说话者标签。此外,在线聚类算法通常在具有流式音频输入的实时说话人分类应用中效果欠佳。我们的模型和常见聚类算法的关键区别在于,我们使用地方法,所有说话人嵌入都是通过参数共享递归神经网络(RNN)建模的,并使用交织在时间域的不同的 RNN 状态区分不同的说话者。


为了解其工作原理,请参见以下示例,其中有四种可能的说话人:蓝色、黄色、粉红色和绿色。这是一个任意的数字,实际上可能还有更多,我们使用了中国餐馆流程(一个典型的 Dirichlet 过程混合模型 )来处理未知数量的说话人。每个说话人以其自己的 RNN 实例(在所有说话人之间共享的公共初始状态)开始,并且在给定来自该说话人的新嵌入的情况下保持更新 RNN 状态。在下面的示例中,蓝色说话人不断更新其 RNN 状态,直到另一个说话人黄色进入。如果蓝色稍后再次说话,它将继续更新其 RNN 状态。(这只是下图中语音段 y7 的可能性之一。如果新的说话人绿色进入,它将以新的 RNN 实例开始。)



(模型的生成过程。颜色表示说话人片段的标签。)


将说话人表示为 RNN 状态使我们能够学习使用 RNN 参数在不同说话人和话语之间共享的高水平知识,这保证了更多标记数据能发挥更大的作用。相比之下,常见的聚类算法几乎总是独立地处理单个发音,因此很难从大量标记数据中受益。


如此,通过时间标记的说话人标签(即知道谁在何时说话),我们可以用标准的随机梯度下降算法训练模型。经过训练的模型可以对系统未听到过的说话人进行分类。此外,在线解码也使其更适用于对延迟敏感的应用程序。

未来计划

尽管该系统使得分类性能大大提高,但我们目前仍在探索许多令人兴奋的方向。首先,我们正在改进此模型,让它可以轻松地集成上下文信息进行离线解码。这可能会进一步降低 DER,并且对延迟不敏感的应用程序更有用。其次,我们计划直接模拟声学特征而不是使用 d 向量。通过这种方法,我们能够以端到端的方式训练整个说话人分类系统。


论文链接:https://arxiv.org/abs/1810.04719


开源算法地址:https://github.com/google/uis-rnn


原文链接:https://ai.googleblog.com/


2018-11-13 19:443105
用户头像

发布了 42 篇内容, 共 16.9 次阅读, 收获喜欢 53 次。

关注

评论

发布
暂无评论
发现更多内容

全球代理HTTP的使用范围?罗拉ROLA-IP表现突出

Geek_ccdd7f

先进制造业迎来利好新政:增值税加计抵减5%

用友BIP

税务

清华-用友数智化领导力项目正式开课!

用友BIP

数智化领导力

Java表达式引擎选型调研分析 | 京东云技术团队

京东科技开发者

Java 后端 企业号11月PK榜 表达式引擎 Java表达式

许多朋友问我有没有好用的海外代理IP

Geek_ccdd7f

ROLA-IP在HTTP海外IP代理市场的优势

Geek_ccdd7f

基于 PostgreSQL 构建 AI 电商产品图片相似度搜索方案

亚马逊云科技 (Amazon Web Services)

postgresql 向量数据库 生成式人工智能 Amazon SageMaker 大语言模型

第三期 |《实时洞察 智能运营一用友企业绩效管理白皮书》解读

用友BIP

企业绩效管理

币安进军 Web3 钱包领域预示着几个重要的趋势和发展

区块链软件开发推广运营

dapp开发 区块链开发 链游开发 NFT开发 公链开发

如何使用Python调用API接口获取淘宝商品数据

Noah

纯CSS实现魔法渐变边框卡片

南城FE

CSS css3 前端 用户体验

ROLA-IP海外IP代理全球动态ip代理用途分析

Geek_ccdd7f

使用Python调用API接口获取淘宝商品数据

Noah

Spring高手之路16——解析XML配置映射为BeanDefinition的源码

砖业洋__

spring源码 BeanDefinition分析 Spring框架内部工作 XML配置文件

GPTs数据泄露大语言模型安全刻不容缓,如何用AI Agent提升LLM应用安全系数?

王吉伟频道

数据安全 大语言模型 AI Agent AI智能体 RPA Agent

一台亚马逊EC2对开发者而言意味着什么?

申屠鹏会

纺织行业如何利用数智人力迈向新型工业化

用友BIP

数智人力

MySQL 人脸向量,欧几里得距离相似查询

北桥苏

Python MySQL OpenCV dlib PyTorch

NFTScan | 11.06~11.12 NFT 市场热点汇总

NFT Research

NFT\ NFTScan nft工具

网络安全专用产品有哪些?能一一列举出来吗?

行云管家

网络安全 防火墙 等保 安全运维

谷歌开源监督式说话人分类算法,准确率高达92.4%_AI&大模型_Google AI_InfoQ精选文章