写点什么

阿里云 Redis 开发规范

  • 2019-04-02
  • 本文字数:3776 字

    阅读完需:约 12 分钟

阿里云Redis开发规范

本文介绍了在使用阿里云 Redis 的开发规范,从键值设计、命令使用、客户端使用、相关工具等方面进行说明,通过本文的介绍可以减少使用 Redis 过程带来的问题。

一、键值设计

1. key 名设计

  • (1)【建议】: 可读性和可管理性


以业务名(或数据库名)为前缀(防止 key 冲突),用冒号分隔,比如业务名:表名:id


ugc:video:1
复制代码


  • (2)【建议】:简洁性


保证语义的前提下,控制 key 的长度,当 key 较多时,内存占用也不容忽视,例如:


user:{uid}:friends:messages:{mid}简化为u:{uid}:fr:m:{mid}。
复制代码


  • (3)【强制】:不要包含特殊字符


反例:包含空格、换行、单双引号以及其他转义字符


详细解析

2. value 设计

  • (1)【强制】:拒绝 bigkey(防止网卡流量、慢查询)


string 类型控制在 10KB 以内,hash、list、set、zset 元素个数不要超过 5000。


反例:一个包含 200 万个元素的 list。


非字符串的 bigkey,不要使用 del 删除,使用 hscan、sscan、zscan 方式渐进式删除,同时要注意防止 bigkey 过期时间自动删除问题(例如一个 200 万的 zset 设置 1 小时过期,会触发 del 操作,造成阻塞,而且该操作不会不出现在慢查询中(latency 可查)),查找方法删除方法


详细解析


  • (2)【推荐】:选择适合的数据类型。


例如:实体类型(要合理控制和使用数据结构内存编码优化配置,例如 ziplist,但也要注意节省内存和性能之间的平衡)


反例:


set user:1:name tomset user:1:age 19set user:1:favor football
复制代码


正例:


hmset user:1 name tom age 19 favor football
复制代码

3.【推荐】:控制 key 的生命周期,redis 不是垃圾桶。

建议使用 expire 设置过期时间(条件允许可以打散过期时间,防止集中过期),不过期的数据重点关注 idletime。

二、命令使用

1.【推荐】 O(N)命令关注 N 的数量

例如 hgetall、lrange、smembers、zrange、sinter 等并非不能使用,但是需要明确 N 的值。有遍历的需求可以使用 hscan、sscan、zscan 代替。

2.【推荐】:禁用命令

禁止线上使用 keys、flushall、flushdb 等,通过 redis 的 rename 机制禁掉命令,或者使用 scan 的方式渐进式处理。

3.【推荐】合理使用 select

redis 的多数据库较弱,使用数字进行区分,很多客户端支持较差,同时多业务用多数据库实际还是单线程处理,会有干扰。

4.【推荐】使用批量操作提高效率

原生命令:例如mget、mset。非原生命令:可以使用pipeline提高效率。
复制代码


但要注意控制一次批量操作的元素个数(例如 500 以内,实际也和元素字节数有关)。


注意两者不同:


原生是原子操作,pipeline是非原子操作。pipeline可以打包不同的命令,原生做不到pipeline需要客户端和服务端同时支持。
复制代码

5.【建议】Redis 事务功能较弱,不建议过多使用

Redis 的事务功能较弱(不支持回滚),而且集群版本(自研和官方)要求一次事务操作的 key 必须在一个 slot 上(可以使用 hashtag 功能解决)

6.【建议】Redis 集群版本在使用 Lua 上有特殊要求:

  • 1.所有 key 都应该由 KEYS 数组来传递,redis.call/pcall 里面调用的 redis 命令,key 的位置,必须是 KEYS array, 否则直接返回 error,"-ERR bad lua script for redis cluster, all the keys that the script uses should be passed using the KEYS array"

  • 2.所有 key,必须在 1 个 slot 上,否则直接返回 error, “-ERR eval/evalsha command keys must in same slot”

7.【建议】必要情况下使用 monitor 命令时,要注意不要长时间使用。

三、客户端使用

1.【推荐】

避免多个应用使用一个 Redis 实例


正例:不相干的业务拆分,公共数据做服务化。

2.【推荐】

使用带有连接池的数据库,可以有效控制连接,同时提高效率,标准使用方式:


执行命令如下:Jedis jedis = null;try {    jedis = jedisPool.getResource();    //具体的命令    jedis.executeCommand()} catch (Exception e) {    logger.error("op key {} error: " + e.getMessage(), key, e);} finally {    //注意这里不是关闭连接,在JedisPool模式下,Jedis会被归还给资源池。    if (jedis != null)         jedis.close();}
复制代码


下面是 JedisPool 优化方法的文章:


3.【建议】

高并发下建议客户端添加熔断功能(例如 netflix hystrix)

4.【推荐】

设置合理的密码,如有必要可以使用 SSL 加密访问(阿里云 Redis 支持)

5.【建议】

根据自身业务类型,选好 maxmemory-policy(最大内存淘汰策略),设置好过期时间。


默认策略是 volatile-lru,即超过最大内存后,在过期键中使用 lru 算法进行 key 的剔除,保证不过期数据不被删除,但是可能会出现 OOM 问题。

其他策略如下:
  • allkeys-lru:根据 LRU 算法删除键,不管数据有没有设置超时属性,直到腾出足够空间为止。

  • allkeys-random:随机删除所有键,直到腾出足够空间为止。

  • volatile-random:随机删除过期键,直到腾出足够空间为止。

  • volatile-ttl:根据键值对象的 ttl 属性,删除最近将要过期数据。如果没有,回退到 noeviction 策略。

  • noeviction:不会剔除任何数据,拒绝所有写入操作并返回客户端错误信息"(error) OOM command not allowed when used memory",此时 Redis 只响应读操作。

四、相关工具

1.【推荐】:数据同步

redis 间数据同步可以使用:redis-port

2.【推荐】:big key 搜索

redis大key搜索工具

3.【推荐】:热点 key 寻找(内部实现使用 monitor,所以建议短时间使用)

facebook的redis-faina


阿里云Redis已经在内核层面解决热点key问题,欢迎使用。
复制代码

五 附录:删除 bigkey

1. 下面操作可以使用pipeline加速。2. redis 4.0已经支持key的异步删除,欢迎使用。
复制代码

1. Hash 删除: hscan + hdel

public void delBigHash(String host, int port, String password, String bigHashKey) {    Jedis jedis = new Jedis(host, port);    if (password != null && !"".equals(password)) {        jedis.auth(password);    }    ScanParams scanParams = new ScanParams().count(100);    String cursor = "0";    do {        ScanResult<Entry<String, String>> scanResult = jedis.hscan(bigHashKey, cursor, scanParams);        List<Entry<String, String>> entryList = scanResult.getResult();        if (entryList != null && !entryList.isEmpty()) {            for (Entry<String, String> entry : entryList) {                jedis.hdel(bigHashKey, entry.getKey());            }        }        cursor = scanResult.getStringCursor();    } while (!"0".equals(cursor));        //删除bigkey    jedis.del(bigHashKey);}
复制代码

2. List 删除: ltrim

public void delBigList(String host, int port, String password, String bigListKey) {    Jedis jedis = new Jedis(host, port);    if (password != null && !"".equals(password)) {        jedis.auth(password);    }    long llen = jedis.llen(bigListKey);    int counter = 0;    int left = 100;    while (counter < llen) {        //每次从左侧截掉100个        jedis.ltrim(bigListKey, left, llen);        counter += left;    }    //最终删除key    jedis.del(bigListKey);}
复制代码

3. Set 删除: sscan + srem

public void delBigSet(String host, int port, String password, String bigSetKey) {    Jedis jedis = new Jedis(host, port);    if (password != null && !"".equals(password)) {        jedis.auth(password);    }    ScanParams scanParams = new ScanParams().count(100);    String cursor = "0";    do {        ScanResult<String> scanResult = jedis.sscan(bigSetKey, cursor, scanParams);        List<String> memberList = scanResult.getResult();        if (memberList != null && !memberList.isEmpty()) {            for (String member : memberList) {                jedis.srem(bigSetKey, member);            }        }        cursor = scanResult.getStringCursor();    } while (!"0".equals(cursor));        //删除bigkey    jedis.del(bigSetKey);}
复制代码

4. SortedSet 删除: zscan + zrem

public void delBigZset(String host, int port, String password, String bigZsetKey) {    Jedis jedis = new Jedis(host, port);    if (password != null && !"".equals(password)) {        jedis.auth(password);    }    ScanParams scanParams = new ScanParams().count(100);    String cursor = "0";    do {        ScanResult<Tuple> scanResult = jedis.zscan(bigZsetKey, cursor, scanParams);        List<Tuple> tupleList = scanResult.getResult();        if (tupleList != null && !tupleList.isEmpty()) {            for (Tuple tuple : tupleList) {                jedis.zrem(bigZsetKey, tuple.getElement());            }        }        cursor = scanResult.getStringCursor();    } while (!"0".equals(cursor));        //删除bigkey    jedis.del(bigZsetKey);}
复制代码

作者简介

付磊,快手 Cache 负责人,负责公司十数万个 Redis 保障性以及架构相关工作。前阿里云 Redis 数据库技术专家。出版过技术书籍《Redis 开发与运维》,豆瓣评分 9.0。开源 Redis 私有云平台 Cachecloud(github star 4000)。个人公众号为“Redis 开发运维实战”,ID:redisDevops。


2019-04-02 13:4625376

评论 1 条评论

发布
用户头像
想请求一下br/lpop这个命令如果redis连接的链路断掉,会不会造成连接池连接耗尽以及list数据堆积的问题
2019-04-08 16:15
回复
没有更多了
发现更多内容

Ghost Buster Pro for mac(苹果电脑内存清理专家)

春天的风暖暖的

n-Track Studio Suite10 for Mac(多轨音乐制作软件)

春天的风暖暖的

DDD本质论:从哲学到数学,再到工程实践的完整指南之理论篇

canonical

领域驱动设计 DDD 领域模型 可逆计算

Multi Rename Tool for Mac(批量重命名工具)

春天的风暖暖的

JustStream PRO for Mac(投屏软件)

春天的风暖暖的

Cockos Reaper for Mac(专业数字音频制作软件)

春天的风暖暖的

iOS应用商店遭遇首次大规模恶意软件攻击

qife122

appstore ios安全

DSync for mac(文件比较同步工具)

春天的风暖暖的

Jump Desktop for Mac(远程桌面控制软件)

春天的风暖暖的

Native SQLite Manager for Mac(极简SQLite数据库管理器)

春天的风暖暖的

一个基于 .NET 开源、便捷、高效的远程桌面控制工具

追逐时光者

C# .net 微软 远程工具

提高 .NET 编程效率的 Visual Studio 使用技巧和建议!

追逐时光者

.net 微软 Visual Studio 2022

2025 年实用、全面的 VS Code 插件推荐!

追逐时光者

Visual Studio

GitHub 汉化神器,2步快速解锁中文化 GitHub 界面!

追逐时光者

GitHub

ColorWell for Mac(调色板软件)

春天的风暖暖的

Caffeinated for Mac(系统防睡眠工具)

春天的风暖暖的

不写一行代码 .NET 使用 FluentCMS 快速构建现代化内容管理系统(CMS)

追逐时光者

C# .net 微软 CMS

EF Core 10 现已支持 LeftJoin 和 RightJoin 运算符查询了!

追逐时光者

C# .net 微软 EF Core

使用Quarkus构建首个Keycloak MCP服务器实战指南

qife122

Quarkus MCP

一个开源免费、功能丰富的 WPF 自定义控件资源库

追逐时光者

C# .net 微软 WPF

一种更简单的方式运行 C# 代码,简化 C# 开发体验!

追逐时光者

C# .net 微软

Swift Publisher 5 for Mac(专业版面设计工具)

春天的风暖暖的

推荐 3 种 .NET Windows 桌面应用程序自动更新解决方案

追逐时光者

C# .net 微软

2个 GitHub 实用辅助神器,帮你快速了解和上手 GitHub 开源项目(附带GitHub加速器)!

追逐时光者

GitHub

Live Wallpaper & Themes 4K Pro for Mac(超高清4K动态壁纸)

春天的风暖暖的

一个基于 .NET 8 + Ant Design Blazor 开发的简洁现代后台管理框架

追逐时光者

C# .net 微软

Network Radar for mac(强大的网络扫描和管理工具)

春天的风暖暖的

Watts for mac(电池管理软件)

春天的风暖暖的

一套基于 .NET 开源的低代码、权限、工作流、动态接口平台

追逐时光者

C# .net 微软

一个基于 .NET 8 开源免费、高性能、低占用的博客系统

追逐时光者

C# .net 微软 博客系统

Visual Studio 2022 中的 EF Core 反向工程和模型可视化扩展插件

追逐时光者

.net 微软 Visual Studio

阿里云Redis开发规范_服务革新_付磊_InfoQ精选文章