写点什么

多任务学习在推荐算法中的应用(三)

  • 2020-01-07
  • 本文字数:2313 字

    阅读完需:约 8 分钟

多任务学习在推荐算法中的应用(三)
  1. 阿里 ESM2


Conversion Rate Prediction via Post-Click Behaviour Modeling


前面已经介绍过一种基于多任务学习的 CVR 预估模型 ESMM,但对于 CVR 预估来说,ESMM 模型仍面临一定的样本稀疏问题,因为 click 到 buy 的样本非常少。但其实一个用户在购买某个商品之前往往会有一些其他的行为,比如将商品加入购物车或者心愿单。如下图所示:



文中把加购物车或者心愿单的行为称作 Deterministic Action ( DAction ),表示购买目的很明确的一类行为。而其他对购买相关性不是很大的行为称作 Other Action ( OAction )。那原来的 Impression→Click→Buy 购物过程就变为:



Impression→Click→DAction/OAction→Buy 过程。


ESM2 模型结构:



那么该模型的多个任务分别是:


❶ Y1:点击率


❷ Y2:点击到 DAction 的概率


❸ Y3:DAction 到购买的概率


❹ Y4:OAction 到购买的概率


并且从上图看出,模型共有 3 个 loss,计算过程分别是:


❶ pCTR:Impression→Click 的概率是第一个网络的输出。


❷ pCTAVR:Impression→Click→DAction 的概率,pCTAVR = Y1 * Y2,由前两个网络的输出结果相乘得到。


❸ pCTCVR:


Impression→Click→DAction/OAction→Buy 的概率,pCTCVR = CTR * CVR = Y1 * [(1 - Y2) * Y4 + Y2 * Y3],由四个网络的输出共同得到。其中 CVR=(1 - Y2) * Y4 + Y2 * Y3。是因为从点击到 DAction 和点击到 OAction 是对立事件。


随后通过三个 logloss 分别计算三部分的损失:



最终损失函数由三部分加权得到:



  1. YouTube 多目标排序系统


Recommending What Video to Watch Next: A Multitask Ranking System


本文主要解决了视频推荐场景下普遍存在的两个问题:


❶ 视频推荐中的多任务目标。比如不仅需要预测用户是否会观看外,还希望去预测用户对于视频的评分,是否会关注该视频的上传者,否会分享到社交平台等。


❷ 偏置信息。比如用户是否会点击和观看某个视频,并不一定是因为他喜欢,可能仅仅是因为它排在推荐页的最前面,这会导致训练数据产生位置偏置的问题。


模型结构:



从上图可知,整个模型需要预测两大类目标,分别是:


❶ Engagement objectives:主要预测用户是否点击和观看视频的时长。其中通过二分类模型来预测用户的点击行为,而通过回归模型来预测用户观看视频的时长。


❷ Satisfaction objectives:主要预测用户在观看视频后的反馈。其中使用二分类模型来预测用户是否会点击喜欢该视频,而通过回归模型来预测用户对于视频的评分。


模型中有两个比较重要的结构:Multi-gate Mixture-of-Experts ( MMoE ) 和消除位置偏置的 shallow tower。


MMoE 的结构为:



Shallow tower 的结构为:



通过一个 shallow tower 来预测位置偏置信息,输入的特征主要是一些和位置偏置相关的特征,输出的是关于 selection bias 的 logits 值。然后将该输出值加到子任务模型中最后 sigmoid 层前,在预测阶段,则不需要考虑 shallow tower 的结果。值得注意的是,位置偏置信息主要体现在 CTR 预估中,而预测用户观看视频是否会点击喜欢或者用户对视频的评分这些任务,是不需要加入位置偏置信息的。


  1. 知乎推荐页 Ranking 模型


上图是知乎在推荐场景下使用的多目标模型,预测的任务包括点击率、收藏率、点赞率、评论率等,共 8 个目标。可以看出知乎的做法也是底层 embedding 和 DNN 前几层权重设置成共享。损失函数可设置成这几个 task 的简单线性加权和。上线后线上性能:点击率基本不变,而其他的几个指标,比如点赞,收藏大幅提升。


  1. 美图推荐排序多任务


模型结构:


如上图,Multi-task NFwFM 模型的前几个隐层是共享的。在最后即将预估多个目标时通过全连接层进行拆分,各自学习对应任务的参数,从而专注地拟合各自任务。在线上预估时,因为模型尺寸没有变化,推理效率和线上的点击率预估模型一致。考虑到我们是在点击率任务的基础上同时优化关注转化率,融合公式上体现为优先按照点击率排序再按照曝光→关注的转化率排序。Multi-task NFwFM 已在美图秀秀社区首页 Feeds 推荐、相关推荐下滑流全量上线。首页 Feeds 点击率+1.93%,关注转化率+2.90%,相关推荐下滑流人均浏览时长+10.33%,关注转化率+9.30%。


  1. 小结


当我们在推荐场景需要同时优化多个目标时,多任务学习就可以派上用场。那反过来思考一个问题,在什么样的情况下,多任务学习会没效果呢?其实也很容易想到,当多个任务的相关性没那么强时,这些任务之间就会相互扰乱,从而影响最后的效果。


最后总结下现在多任务学习模型的主要使用方式:


❶ 底层 embedding 和 mlp 参数共享,上层演化出各个任务的分支,最后 loss 函数是各个任务的简单加权和。


❷ 通过多任务之间的关系来建模出新的 loss 函数,比如阿里的 ESSM,ESSM2。


❸ 通过 Multi-gate Mixture-of-Experts ( MMoE ) 这种特殊的多任务结构来学习出不同任务的权重,比如 YouTube 的多任务模型。


参考链接:


https://arxiv.org/pdf/1804.07931.pdf


https://www.jianshu.com/p/35f00299c059


https://arxiv.org/pdf/1805.10727.pdf


https://www.jianshu.com/p/aba30d1726ae


https://tech.meituan.com/2018/03/29/recommend-dnn.html


https://zhuanlan.zhihu.com/p/70940522


https://arxiv.org/abs/1910.07099


https://www.jianshu.com/p/c06e9ed08dd1


https://www.jianshu.com/p/2f3dbbfc16a6


https://zhuanlan.zhihu.com/p/89401911


知乎推荐页 Ranking


原文链接:


https://zhuanlan.zhihu.com/p/78762586


https://zhuanlan.zhihu.com/p/91285359


本文转载自 DataFunTalk 公众号。


原文链接:https://mp.weixin.qq.com/s?__biz=MzU1NTMyOTI4Mw==&mid=2247496333&idx=1&sn=da03f8db68e5276cffe73e090ac271ec&chksm=fbd740e1cca0c9f76da90a713311bac81e9890c1f9fd69976705e167dd30e4135db6ea297d6b&scene=27#wechat_redirect


2020-01-07 09:501278

评论

发布
暂无评论
发现更多内容

共探人工智能新发展,AICON 2022 即将重磅开启

极客天地

「趣学前端」读取Excel文件内容

叶一一

JavaScript 前端 9月月更

MySQL高级

楠羽

笔记 MySQL 数据库 9月月更

跟着卷卷龙一起学Camera--LensShading

卷卷龙

ISP camera 9月月更

白话讲解创建型设计模式:单例、原型,构建

山河已无恙

9月月更

C++学习------cinttypes头文件的源码学习

桑榆

c++ 源码阅读 9月月更

C++ STL容器详解【三万字超详细讲解】

Fire_Shield

c++ stl 9月月更

如何用AscendCL的接口开发网络模型推理场景下应用?

华为云开发者联盟

人工智能 企业号九月金秋榜

企业知识管理平台在企业中扮演什么样的角色?

Baklib

知识管理

如何高效解决 C++内存问题,Apache Doris 实践之路|技术解析

SelectDB

c++ 大数据 数据分析 Doris 企业号九月金秋榜

你还不知道什么是Git?

翼同学

git 开源 版本管理 9月月更

产品经理的进阶指南

产品海豚湾

产品经理 产品设计 职业发展 职业道路 9月月更

SD-WAN组网场景概览

阿泽🧸

SD-WAN 9月月更

天呐,我居然可以隔空作画了

华为云开发者联盟

人工智能 华为云 企业号九月金秋榜

想了解Python中的super 函数么

华为云开发者联盟

Python 开发 企业号九月金秋榜

【Git】:SSH公钥配置、远程仓库的基础使用...

翼同学

git 开源 版本管理 9月月更

微信小程序,Python爬虫抓包采集实战,采集某成考题库小程序

梦想橡皮擦

Python 9月月更

使用 Mypy 检查 30 万行 Python 代码,总结出 3 大痛点与 6 个技巧!

Python猫

Python

经验分享|分享搭建在线帮助中心的方法

Baklib

面试突击80:说一下 Spring 中 Bean 的生命周期?

王磊

Java 面试题

JSON之父:10天赶工出的JavaScript,最好的归宿就是让它退役

图灵社区

JavaScript 编程 程序员

JSON 之父:10 天赶工出的 JavaScript,最好的归宿就是让它退役

图灵教育

JavaScript 程序员 代码

设计模式的艺术 第十九章迭代器设计模式练习(设计一个逐页迭代器,每次可返回指定个数(一页)元素,并将该迭代器用于对数据进行分页处理)

代廉洁

设计模式的艺术

连接与计算无处不在,火山引擎新一代边缘云

火山引擎边缘云

云原生 CDN 边缘计算 火山引擎 边缘云

你真的会使用C语言中的 “ 操作符 ” 吗?

Albert Edison

C语言 开发语言 操作符 9月月更

首次全面解析云原生成熟度模型:解决企业「诊断难、规划难、选型难」问题

阿里巴巴中间件

阿里云 中间件 成熟度

mysql之事务

急需上岸的小谢

9月月更

13th 发布在即,一文带你回顾Intel 12th Core

鼎道智联

英特尔 13th处理器 酷睿处理器 12th处理器

开源密码管理器更安全吗?(1)

神锁离线版

开源 数据安全 密码管理 开源安全 开源软件

百万奖池角逐,华为云IoT边缘带你看懂“边缘计算开发者大赛”

华为云开发者联盟

云计算 物联网 华为云 企业号九月金秋榜

【git】:有关git的基础指令以及分支概念

翼同学

git 开源 版本管理 9月月更

多任务学习在推荐算法中的应用(三)_文化 & 方法_Alex-zhai_InfoQ精选文章