写点什么

Amazon Comprehend Medical ,针对医疗保健客户的自然语言处理

  • 2019-10-18
  • 本文字数:2706 字

    阅读完需:约 9 分钟

Amazon Comprehend Medical ,针对医疗保健客户的自然语言处理

作为肠胃科医生和皮肤科医生的后代,在我的成长过程中一直充满了各种晦涩难懂的对话,包含无穷无尽的复杂医学术语:人类解剖学、外科手术、药物名称……以及它们的缩略词。充满求知欲的小孩想知道他的父母是否对这些奇怪的话语感到难以理解,这真的是一段有趣的经历。


因此,非常高兴能发布 Amazon Comprehend Medical,这是 Amazon Comprehend 针对医疗保健客户的延伸。


关于 Amazon Comprehend 的简介


Amazon Comprehend 于去年在 AWS re:Invent 启用。简单来说,该自然语言处理服务针对语言检测、个体分类、情感分析和关键词提取提供了简洁实时 的 API。此外,它还允许您采用名为“主题建模”的无导师学习技术自动编组文本档案。


使用 FINRA、LexisNexis 或 Isentia、Amazon Comprehend 可以理解一般用途的文本。然而,鉴于临床资料非常特殊的属性,医疗保健客户已经要求我们设立专为其特殊需求而定制的 Amazon Comprehend 版本。


隆重推出 Amazon Comprehend Medical


Amazon Comprehend Medical 设于 Amazon Comprehend 顶部,并增加了以下功能:


  • 支持在大量医疗术语词汇中进行个体提取和个体识别:解剖、病情、手术、药物、缩略词等。

  • 在这些类目和子类中精确查找个体提取 API (detect_entities) 。

  • 受保护健康信息提取 API (detect_phi) 可以查找详细联系信息、医疗记录号等。

  • 提醒:Amazon Comprehend Medical 可能无法准确识别所有情况下的受保护健康信息,无法满足 HIPAA 的受保护健康信息去识别化要求。您有责任审阅 Amazon Comprehend Medical 提供的任何输出信息,以确保其满足您的需求。


现在,让我向您展示如何使用这一新服务。首先,我将使用 AWS 控制台,然后会运行一个简单的 Python 示例。


在 AWS 控制台上使用 Amazon Comprehend Medical


打开 AWS 控制台,所有需要做的是粘贴部分文本并点击“分析”按钮。



正在分析文本立即处理文档。个体被提取出来并突出显示:我们看到个人信息为橙色,药物为红色,解剖学信息为紫色,病情为绿色。



准确获得个人识别信息。对于在交流或出版前需要对文档隐去姓名资料的研究者而言,这是非常重要的。而且,“皮疹”和“睡眠障碍”被准确检测为由医生诊断出的病情(‘Dx’ 是“诊断”的速记写法)。也会检测到药物。


然而,Amazon Comprehend Medical 不仅限于简单的医疗术语提取。它还可以理解复杂的关系,如药物剂量或详细的诊断信息。这有一个很好的例子。



如您所见,Amazon Comprehend Medical 可以找出 ‘po‘ 和 ‘qhs‘ 等缩略词:第一个表示药物为口服,第二个则为 ‘quaque hora somni‘(是的,拉丁语)的缩略词,即为睡前。


现在,让我们稍微深入一点,运行一个 Python 示例。


用 AWS SDK 针对 Python 使用 Amazon Comprehend Medical


首先,我们输入 boto3 SDK,创建一个服务客户端。


import boto3comprehend = boto3.client(service_name='comprehendmedical')
复制代码


现在,我们在文本样本中调用 detect_entity API,并打印检测到的个体。


text = "Pt is 40yo mother, software engineer HPI : Sleeping trouble on present dosage of Clonidine.Severe Rash  on face and leg, slightly itchy  Meds : Vyvanse 50 mgs po at breakfast daily, Clonidine 0.2 mgs -- 1 and 1 / 2 tabs po qhs HEENT : Boggy inferior turbinates, No oropharyngeal lesion Lungs : clear Heart : Regular rhythm Skin :  Papular mild erythematous eruption to hairline Follow-up as scheduled"
result = comprehend.detect_entities(Text=text)entities = result['Entities']for entity in entities: print(entity)
复制代码


看一下该药物个体:它有三个嵌套属性(剂量、路径和频率),三个属性增加了至关重要的上下文。


{u'Id': 3,u'Score': 0.9976208806037903,u'BeginOffset': 145, u'EndOffset': 152,u'Category': u'MEDICATION',u'Type': u'BRAND_NAME',u'Text': u'Vyvanse',u'Traits': [],u'Attributes': [  {u'Id': 4,     u'Score': 0.9681360125541687,     u'BeginOffset': 153, u'EndOffset': 159,     u'Type': u'DOSAGE',     u'Text': u'50 mgs',     u'Traits': []     },  {u'Id': 5,     u'Score': 0.99924635887146,     u'BeginOffset': 160, u'EndOffset': 162,     u'Type': u'ROUTE_OR_MODE',     u'Text': u'po',     u'Traits': []     },  {u'Id': 6,     u'Score': 0.9738683700561523,     u'BeginOffset': 163, u'EndOffset': 181,     u'Type': u'FREQUENCY',     u'Text': u'at breakfast daily',     u'Traits': []     }]}
复制代码


还有另一个例子。该病情个体由“否定”识别完成,意味着未检测到病情,即为该患者没有任何口咽病变。


{u'Category': u'MEDICAL_CONDITION',u'Id': 16,u'Score': 0.9825472235679626,u'BeginOffset': 266, u'EndOffset': 286,u'Type': u'DX_NAME',u'Text': u'oropharyngeal lesion',u'Traits': [    {u'Score': 0.9701067209243774, u'Name': u'NEGATION'},    {u'Score': 0.9053299427032471, u'Name': u'SIGN'}]}
复制代码


我向为您展示的最后一个功能是用 detect_phi API 提取个人信息。


result = comprehend.detect_phi(Text=text) entities = result['Entities'] for entity in entities: print(entity)
复制代码


在该文本中出现了几条个人信息,我们精确提取出了这几条个人信息。


{u'Category': u'PERSONAL_IDENTIFIABLE_INFORMATION',u'BeginOffset': 6, u'EndOffset': 10, u'Text': u'40yo',u'Traits': [],u'Score': 0.997914731502533,u'Type': u'AGE', u'Id': 0}
{u'Category': u'PERSONAL_IDENTIFIABLE_INFORMATION',u'BeginOffset': 19, u'EndOffset': 36, u'Text': u'software engineer',u'Traits': [],u'Score': 0.8865673542022705,u'Type': u'PROFESSION', u'Id': 1}
复制代码


如您所见,Amazon Comprehend 可帮助您提取复杂的信息和关系,同时操作起来特别简单。


再次提醒,请记得 Amazon Comprehend Medical 并非专业医疗设备、诊断或治疗的替代品。您肯定要仔细审阅它提供的任何信息,并在作出决定前根据经验进行判断。


现已推出


我希望这篇博文提供了丰富的有用信息。您现在就可以开始用 Amazon Comprehend Medical 在以下地区开发应用程序:美国东部(弗吉尼亚北部)、美国中部(俄亥俄)、美国西部(俄勒冈)和欧洲(爱尔兰)。


此外,该服务属于 AWS 免费套餐范畴:注册后三个月,前 25000 份(或 250 万字)文本免费。


为什么不在最近的处方或医学考试中试一试,并让我们了解您的想法呢?


— Julien;


本文转载自 AWS 技术博客。


原文链接:


https://amazonaws-china.com/cn/blogs/china/amazon-comprehend-medical-natural-language-processing-for-healthcare-customers/


2019-10-18 12:31885
用户头像

发布了 1918 篇内容, 共 150.8 次阅读, 收获喜欢 81 次。

关注

评论

发布
暂无评论
发现更多内容

【动态规划/路径问题】强化 DP 分析方法练习题 ...

宫水三叶的刷题日记

面试 LeetCode 数据结构与算法

Yarn日志聚合优化—摆脱HDFS依赖

kwang

大数据 YARN

一个三本生的Java进阶之路:6年时间,从菜鸟到阿里P7!

Java架构之路

Java 程序员 架构 面试 编程语言

“看得见 摸不着”的数字货币 助推数字经济强国建设

CECBC

数字经济

项目截图

赝品

世纪联华的 Serverless 之路

Serverless Devs

Java Serverless 架构 运维 云原生

守护网络安全不是问题,iptables的四表五链为你开启“八卦阵”

华为云开发者联盟

网络安全 iptables 虚拟私有云 安全组 网络ACL

#开工新姿势#开启一年新征程,云社区叫你来充电啦!

华为云开发者联盟

内容 技术人 华为云 文章 云社区

Mysql是怎么运行的-读书笔记1

一个大红包

3月日更

开课啦 dubbo-go 微服务升级实战

阿里巴巴云原生

容器 微服务 云原生 k8s dubbo

数字货币持币生息钱包系统开发搭建

薇電13242772558

区块链 数字货币

还不懂云数据库Redis是什么?快上车,一张图带你了解!

云数据库

android开发教程!写给安卓软件工程师的3条建议,一线互联网公司面经总结

欢喜学安卓

android 程序员 面试 移动开发

大厂社招Java面经:蚂蚁金服、拼多多、字节跳动(现已入职蚂蚁)

Java架构之路

Java 程序员 架构 面试 编程语言

【笔记】第七周 第1课

Geek_娴子

音乐api接入HIFIVE音乐开放平台,获取百万正版音乐,最快30分钟集成上线!

曲多多(嗨翻屋)版权音乐

API sdk 音乐 物联网,API,sdk

如何破解区块链人才的结构性问题?

CECBC

区块链

Nacos配置安全最佳实践

Robert Lu

nacos 配置中心

终于有人把 "高可用" 说清楚了

架构精进之路

3月日更

华为云PB级数据库GaussDB(for Redis)介绍第四期:高斯 Geo的介绍与应用

华为云开发者联盟

数据库 redis 华为云 geo Gauss DB

四年Java开发,面试核心知识点(腾讯+阿里+快手面经)附答案

Java架构之路

Java 程序员 架构 面试 编程语言

Linux C/C++ 学习路线(已拿腾讯、百度等)

赖猫

c++ Linux服务器开发 LinuxC/C++

身份和访问管理(IAM)

龙归科技

iam 身份和访问管理

滚雪球学 Python 之内置函数:filter、map、reduce、zip、enumerate

梦想橡皮擦

28天写作 3月日更

HashData携手中国移动 共筑通信技术数字化之路

酷克数据HashData

数据库 解决方案

【20万大奖】参加APICloud3.0案例与AVM组件大赛,赢现金大奖

YonBuilder低代码开发平台

开发者 大前端 APP开发 APICloud

大作业(二)

cc

2021年爆锤39K月薪Offer!阿里巴巴Java面试(知识点)整理

Java架构追梦

Java 阿里巴巴 架构 面试 全栈知识点

Linux 查询 OS、CPU、内存、硬盘信息

薇薇

Linux cpu 内存

Redis 如何存储上亿级别的用户状态?

薇薇

数据库 redis 存储

震荡的比特币:区块链的“照妖镜”

CECBC

数字货币

Amazon Comprehend Medical ,针对医疗保健客户的自然语言处理_语言 & 开发_亚马逊云科技 (Amazon Web Services)_InfoQ精选文章