写点什么

从操作系统层面理解 Linux 下的网络 IO 模型

  • 2020-02-06
  • 本文字数:5756 字

    阅读完需:约 19 分钟

从操作系统层面理解Linux下的网络IO模型

I/O( INPUT OUTPUT),包括文件 I/O、网络 I/O。


计算机世界里的速度鄙视:


  • 内存读数据:纳秒级别。

  • 千兆网卡读数据:微妙级别。1 微秒=1000 纳秒,网卡比内存慢了千倍。

  • 磁盘读数据:毫秒级别。1 毫秒=10 万纳秒 ,硬盘比内存慢了 10 万倍。

  • CPU 一个时钟周期 1 纳秒上下,内存算是比较接近 CPU 的,其他都等不起。


CPU 处理数据的速度远大于 I/O 准备数据的速度 。


任何编程语言都会遇到这种 CPU 处理速度和 I/O 速度不匹配的问题!


在网络编程中如何进行网络 I/O 优化:怎么高效地利用 CPU 进行网络数据处理???

一、相关概念

从操作系统层面怎么理解网络 I/O 呢?计算机的世界有一套自己定义的概念。如果不明白这些概念,就无法真正明白技术的设计思路和本质。所以在我看来,这些概念是了解技术和计算机世界的基础。

1.1 同步与异步,阻塞与非阻塞

理解网络 I/O 避不开的话题:同步与异步,阻塞与非阻塞。


拿山治烧水举例来说,(山治的行为好比用户程序,烧水好比内核提供的系统调用),这两组概念翻译成大白话可以这么理解。


  • 同步/异步关注的是水烧开之后需不需要我来处理。

  • 阻塞/非阻塞关注的是在水烧开的这段时间是不是干了其他事。

1.1.1 同步阻塞

点火后,傻等,不等到水开坚决不干任何事(阻塞),水开了关火(同步)。


1576642331113004942.png

1.1.2 同步非阻塞

点火后,去看电视(非阻塞),时不时看水开了没有,水开后关火(同步)。


1576642338581018229.png

1.1.3 异步阻塞

按下开关后,傻等水开(阻塞),水开后自动断电(异步)。


1576642347459009266.png


网络编程中不存在的模型。

1.1.4 异步非阻塞

按下开关后,该干嘛干嘛 (非阻塞),水开后自动断电(异步)。


1576642355117019190.png

1.2 内核空间 、用户空间

1576642436600045337.png


  • 内核负责网络和文件数据的读写。

  • 用户程序通过系统调用获得网络和文件的数据。

1.2.1 内核态 用户态

1576642443468051843.png


  • 程序为读写数据不得不发生系统调用。

  • 通过系统调用接口,线程从用户态切换到内核态,内核读写数据后,再切换回来。

  • 进程或线程的不同空间状态。

1.2.2 线程的切换

1576642455359030556.png


用户态和内核态的切换耗时,费资源(内存、CPU)


优化建议:


  • 更少的切换。

  • 共享空间。

1.3 套接字 – socket

1576642467801001182.png


  • 有了套接字,才可以进行网络编程。

  • 应用程序通过系统调用 socket(),建立连接,接收和发送数据(I / O)。

  • SOCKET 支持了非阻塞,应用程序才能非阻塞调用,支持了异步,应用程序才能异步调用

1.4 文件描述符 –FD 句柄

1576642483782050770.png


1576642490076078154.png


1576642496249034409.png


网络编程都需要知道 FD??? FD 是个什么鬼???


Linux:万物都是文件,FD 就是文件的引用。像不像 JAVA 中万物都是对象?程序中操作的是对象的引用。JAVA 中创建对象的个数有内存的限制,同样 FD 的个数也是有限制的。


1576642507958005360.png


Linux 在处理文件和网络连接时,都需要打开和关闭 FD。


每个进程都会有默认的 FD:


  • 0 标准输入 stdin

  • 1 标准输出 stdout

  • 2 错误输出 stderr

1.5 服务端处理网络请求的过程

1576642527144025402.png


  • 连接建立后。

  • 等待数据准备好(CPU 闲置)。

  • 将数据从内核拷贝到进程中(CPU 闲置)。


怎么优化呢?


对于一次 I/O 访问(以 read 举例),数据会先被拷贝到操作系统内核的缓冲区,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。


所以说,当一个 read 操作发生时,它会经历两个阶段:


  • 等待数据准备 (Waiting for the data to be ready)。

  • 将数据从内核拷贝到进程中 (Copying the data from the kernel to the process)。


正是因为这两个阶段,Linux 系统升级迭代中出现了下面三种网络模式的解决方案。

二、IO 模型介绍

2.1 阻塞 I/O - Blocking I/O

1576642540134016122.png


简介:最原始的网络 I/O 模型。进程会一直阻塞,直到数据拷贝完成。


缺点:高并发时,服务端与客户端对等连接,线程多带来的问题:


  • CPU 资源浪费,上下文切换。

  • 内存成本几何上升,JVM 一个线程的成本约 1MB。


public static void main(String[] args) throws IOException {        ServerSocket ss = new ServerSocket();        ss.bind(new InetSocketAddress(Constant.HOST, Constant.PORT));        int idx =0;        while (true) {            final Socket socket = ss.accept();//阻塞方法            new Thread(() -> {                handle(socket);            },"线程["+idx+"]" ).start();        }    }
static void handle(Socket socket) { byte[] bytes = new byte[1024]; try { String serverMsg = " server sss[ 线程:"+ Thread.currentThread().getName() +"]"; socket.getOutputStream().write(serverMsg.getBytes());//阻塞方法 socket.getOutputStream().flush(); } catch (Exception e) { e.printStackTrace(); } }
复制代码

2.2 非阻塞 I/O - Non Blocking IO

1576642704039025856.png


简介:进程反复系统调用,并马上返回结果。


缺点:当进程有 1000fds,代表用户进程轮询发生系统调用 1000 次 kernel,来回的用户态和内核态的切换,成本几何上升。


public static void main(String[] args) throws IOException {        ServerSocketChannel ss = ServerSocketChannel.open();        ss.bind(new InetSocketAddress(Constant.HOST, Constant.PORT));        System.out.println(" NIO server started ... ");        ss.configureBlocking(false);        int idx =0;        while (true) {            final SocketChannel socket = ss.accept();//阻塞方法            new Thread(() -> {                handle(socket);            },"线程["+idx+"]" ).start();        }    }    static void handle(SocketChannel socket) {        try {            socket.configureBlocking(false);            ByteBuffer byteBuffer = ByteBuffer.allocate(1024);            socket.read(byteBuffer);            byteBuffer.flip();            System.out.println("请求:" + new String(byteBuffer.array()));            String resp = "服务器响应";            byteBuffer.get(resp.getBytes());            socket.write(byteBuffer);        } catch (IOException e) {            e.printStackTrace();        }    }
复制代码

2.3 I/O 多路复用 - IO multiplexing

1576642721053094559.png


简介:单个线程就可以同时处理多个网络连接。内核负责轮询所有 socket,当某个 socket 有数据到达了,就通知用户进程。多路复用在 Linux 内核代码迭代过程中依次支持了三种调用,即 SELECT、POLL、EPOLL 三种多路复用的网络 I/O 模型。下文将画图结合 Java 代码解释。

2.3.1 I/O 多路复用- select

1576642729644083157.png


简介:有连接请求抵达了再检查处理。


缺点:


  • 句柄上限- 默认打开的 FD 有限制,1024 个。

  • 重复初始化-每次调用 select(),需要把 fd 集合从用户态拷贝到内核态,内核进行遍历。

  • 逐个排查所有 FD 状态效率不高。


服务端的 select 就像一块布满插口的插排,client 端的连接连上其中一个插口,建立了一个通道,然后再在通道依次注册读写事件。一个就绪、读或写事件处理时一定记得删除,要不下次还能处理。


public static void main(String[] args) throws IOException {        ServerSocketChannel ssc = ServerSocketChannel.open();//管道型ServerSocket        ssc.socket().bind(new InetSocketAddress(Constant.HOST, Constant.PORT));        ssc.configureBlocking(false);//设置非阻塞        System.out.println(" NIO single server started, listening on :" + ssc.getLocalAddress());        Selector selector = Selector.open();        ssc.register(selector, SelectionKey.OP_ACCEPT);//在建立好的管道上,注册关心的事件 就绪        while(true) {            selector.select();            Set keys = selector.selectedKeys();            Iterator it = keys.iterator();            while(it.hasNext()) {                SelectionKey key = it.next();                it.remove();//处理的事件,必须删除                handle(key);            }        }    }    private static void handle(SelectionKey key) throws IOException {        if(key.isAcceptable()) {                ServerSocketChannel ssc = (ServerSocketChannel) key.channel();                SocketChannel sc = ssc.accept();                sc.configureBlocking(false);//设置非阻塞                sc.register(key.selector(), SelectionKey.OP_READ );//在建立好的管道上,注册关心的事件 可读        } else if (key.isReadable()) { //flip            SocketChannel sc = null;                sc = (SocketChannel)key.channel();                ByteBuffer buffer = ByteBuffer.allocate(512);                buffer.clear();                int len = sc.read(buffer);                if(len != -1) {                    System.out.println("[" +Thread.currentThread().getName()+"] recv :"+ new String(buffer.array(), 0, len));                }                ByteBuffer bufferToWrite = ByteBuffer.wrap("HelloClient".getBytes());                sc.write(bufferToWrite);        }    }
复制代码

2.3.2 I/O 多路复用 – poll

1576642741019008193.png


简介:设计新的数据结构(链表)提供使用效率。


poll 和 select 相比在本质上变化不大,只是 poll 没有了 select 方式的最大文件描述符数量的限制。


缺点:逐个排查所有 FD 状态效率不高。

2.3.3 I/O 多路复用- epoll

简介:没有 fd 个数限制,用户态拷贝到内核态只需要一次,使用事件通知机制来触发。通过 epoll_ctl 注册 fd,一旦 fd 就绪就会通过 callback 回调机制来激活对应 fd,进行相关的 I/O 操作。


缺点:


  • 跨平台,Linux 支持最好。

  • 底层实现复杂。

  • 同步。


 public static void main(String[] args) throws Exception {        final AsynchronousServerSocketChannel serverChannel = AsynchronousServerSocketChannel.open()                .bind(new InetSocketAddress(Constant.HOST, Constant.PORT));        serverChannel.accept(null, new CompletionHandler() {            @Override            public void completed(final AsynchronousSocketChannel client, Object attachment) {                serverChannel.accept(null, this);                ByteBuffer buffer = ByteBuffer.allocate(1024);                client.read(buffer, buffer, new CompletionHandler() {                    @Override                    public void completed(Integer result, ByteBuffer attachment) {                        attachment.flip();                        client.write(ByteBuffer.wrap("HelloClient".getBytes()));//业务逻辑                    }                    @Override                    public void failed(Throwable exc, ByteBuffer attachment) {                        System.out.println(exc.getMessage());//失败处理                    }                });            }
@Override public void failed(Throwable exc, Object attachment) { exc.printStackTrace();//失败处理 } }); while (true) { //不while true main方法一瞬间结束 } }
复制代码


当然上面的缺点相比较它优点都可以忽略。JDK 提供了异步方式实现,但在实际的 Linux 环境中底层还是 epoll,只不过多了一层循环,不算真正的异步非阻塞。而且就像上图中代码调用,处理网络连接的代码和业务代码解耦得不够好。Netty 提供了简洁、解耦、结构清晰的 API。


 public static void main(String[] args) {        new NettyServer().serverStart();        System.out.println("Netty server started !");    }
public void serverStart() { EventLoopGroup bossGroup = new NioEventLoopGroup(); EventLoopGroup workerGroup = new NioEventLoopGroup(); ServerBootstrap b = new ServerBootstrap(); b.group(bossGroup, workerGroup) .channel(NioServerSocketChannel.class) .childHandler(new ChannelInitializer() { @Override protected void initChannel(SocketChannel ch) throws Exception { ch.pipeline().addLast(new Handler()); } }); try { ChannelFuture f = b.localAddress(Constant.HOST, Constant.PORT).bind().sync(); f.channel().closeFuture().sync(); } catch (InterruptedException e) { e.printStackTrace(); } finally { workerGroup.shutdownGracefully(); bossGroup.shutdownGracefully(); } }}
class Handler extends ChannelInboundHandlerAdapter { @Override public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception { ByteBuf buf = (ByteBuf) msg; ctx.writeAndFlush(msg); ctx.close(); }
@Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception { cause.printStackTrace(); ctx.close(); }}
复制代码


bossGroup 处理网络请求的大管家(们),网络连接就绪时,交给 workGroup 干活的工人(们)。

三、总结

回顾

  • 同步/异步,连接建立后,用户程序读写时,如果最终还是需要用户程序来调用系统 read()来读数据,那就是同步的,反之是异步。Windows 实现了真正的异步,内核代码甚为复杂,但对用户程序来说是透明的。

  • 阻塞/非阻塞,连接建立后,用户程序在等待可读可写时,是不是可以干别的事儿。如果可以就是非阻塞,反之阻塞。大多数操作系统都支持的。

Redis,Nginx,Netty,Node.js 为什么这么香?

这些技术都是伴随 Linux 内核迭代中提供了高效处理网络请求的系统调用而出现的。了解计算机底层的知识才能更深刻地理解 I/O,知其然,更要知其所以然。与君共勉!


本文转载自宜信技术学院网站。


原文链接:http://college.creditease.cn/detail/337


2020-02-06 10:331512

评论

发布
暂无评论
发现更多内容

GitHub标星150K的神仙笔记,3个月肝完成功面进美团定级3-2

Java架构之路

Java 程序员 架构 面试 编程语言

2021年,字节/百度/阿里相继发布50W+优质Java岗(含内部面试真题及答案)

996小迁

Java 程序员 架构 面试

技术人员如何写好周报

猿话

技术创新是PC市场发展基石,英特尔占据明显领先优势

E科讯

Soul 网关源码阅读(四)Dubbo请求概览

Java 源码阅读 网关

架构师第8周作业

Geek_xq

架构师第八周总结

Geek_xq

2021字节、华为、滴滴Java内部面试题(含答案),新鲜出炉!

比伯

Java 编程 架构 面试 程序人生

APICloud AVM多端开发 |《生鲜电商app开发》项目源码教程

YonBuilder低代码开发平台

大前端 移动开发 APP开发 APICloud

Java 程序经验小结:剖析@SuppressWarinings注解

后台技术汇

28天写作

安卓开发实战!闭关在家37天“吃透”这份345页PDF,成功定级腾讯T3-2

欢喜学安卓

android 程序员 面试 移动开发

[5/28]产品运维保障体系的质量实践

L3C老司机

极客训练营知识点思维导图

jorden wang

二本学渣考研失败,为什么Android要采用Binder作为IPC机制?已开源

欢喜学安卓

android 程序员 面试 移动开发

电商网站商品管理(二)多种搜索方式

escray

elasticsearch elastic 28天写作 死磕Elasticsearch 60天通过Elastic认证考试

区块链2021狂想曲:迎接以技术为名的春天

脑极体

训练营第十三周作业

大脸猫

华云大咖说|企业混合云构建之道

华云数据

云计算 桌面云

从姚安娜出道说起

三只猫

28天写作 社交泛娱乐

一文带你学会AQS和并发工具类的关系

伯阳

AQS java 并发 ReentrantLock 多线程高并发 lock锁

在GitHub中向开源项目提交PR的过程

worry

GitHub pull request

9. 细节见真章,Formatter注册中心的设计很讨巧

YourBatman

Converter ConversionService Formatter

Nginx 的负载均衡模式有哪些?它的实现原理是什么?

李尚智

nginx 架构 微服务

PHP转JAVA开发30分钟实战攻略

dothetrick

Java php

百度面试被算法血虐,闭关29天肝完445页算法神仙笔记成功入职字节跳动!

Java架构之路

Java 程序员 架构 面试 编程语言

矿机挖矿软件系统开发|矿机挖矿APP开发

系统开发

超越身边80%的人,其实没有你想象的那么难

架构精进之路

认知提升 成长笔记 七日更 28天写作

【得物技术】代码覆盖率原理与得物app实践

得物技术

测试 原理 代码 得物技术 覆盖率

解读容器的 2020:寻找云原生的下一站

阿里巴巴云原生

Docker 云计算 Serverless 容器 云原生

架构师训练营第十三周笔记

李日盛

笔记

使用 kubectl-rabbitmq 部署和运维 K8S 上的 RabbitMQ 集群

郭旭东

RabbitMQ kubectl kubectl plugin

从操作系统层面理解Linux下的网络IO模型_行业深度_周胜帅_InfoQ精选文章