50万奖金+官方证书,深圳国际金融科技大赛正式启动,点击报名 了解详情
写点什么

字节跳动开源高性能分布式训练框架 BytePS:兼容 TensorFlow 等

  • 2019-06-27
  • 本文字数:2735 字

    阅读完需:约 9 分钟

字节跳动开源高性能分布式训练框架BytePS:兼容TensorFlow等

近日,字节跳动人工智能实验室宣布开源一款高性能分布式深度学习训练框架 BytePS,在性能上颠覆了过去几年 allreduce 流派一直占据上风的局面,超出目前其他所有分布式训练框架一倍以上的性能,且同时能够支持 Tensorflow、PyTorch、MXNet 等开源库。


首先奉上 BytePS 开源项目地址:https://github.com/bytedance/byteps


BytePS 结合了字节跳动人工智能实验室几个月来对分布式训练通信的多个研究与优化成果,包含通信优先级调度、PS 的 RDMA 实现、针对 PCIe switch 与 NUMA 的优化,以及 BytePS 本身构架的创新等。


深度学习的效果取决于模型与数据,目前行业内不断刷新深度学习准确率的最新研究,大多都基于更大的模型以及更大的数据集。然而,大模型与大数据对训练时的计算能力提出了极高要求,单张 GPU 卡,或者单台服务器上的 GPU 卡,已经远远不能够满足内部训练任务的需求。因此,分布式训练的效率,即使用多台服务器协同进行训练,现在成为了深度学习系统的核心竞争力。


一直以来,在分布式训练中有两大流派,分别是 allreduce 和 PS(Parameter Server)。过去三年中,尤其是百度提出 allreduce,以及 Uber 开源基于 allreduce 的 Horovod 之后,行业内的认知中,allreduce 是最好的分布式训练通信方式,而过去的 PS 实现的性能也确实与 allreduce 存在一定差距。


BytePS 颠覆了 allreduce 长期领先的局面,BytePS 拥有着超出目前其他所有分布式训练框架一倍以上的性能,包括 NVIDIA 开源的 NCCL,Uber 开源的 Horovod,以及 Tensorflow、PyTorch、MXNet 自带的分布式训练方案等。


BytePS 开发团队表示,在公有云或者私有云这类共享集群中,经过精巧设计和高质量实现的 PS,PS 架构不仅不比 allreduce 差,而且在一些环境还能得到比 allreduce 还高一倍的速度。


为了做到针对云计算和共享集群场景的最优训练表现,BytePS 团队重新思考了最佳通信策略,不仅在机器内使用 NCCL,同时也重新部署了机器间的通信方式。


据介绍,在服务器内,GPU 是插在不同的 PCIe switch 上的,相同 PCIe switch 内的 GPU 通信带宽较高,跨 PCIe switch 的通信带宽就较小。NUMA 是指服务器上有不止一颗 CPU,CPU 内存也有类似问题:同 CPU 的内存访问带宽高,跨 CPU 的内存访问带宽低。BytePS 会根据这些信息,有选择地分配数据在 CPU 和 GPU 中的内存位置,以及哪块内存和哪块内存通信,从而最大化通信带宽。


BytePS 构架本身也做了一些重要设计,使得 PS 架构理论上的潜能得以实现,包括:Tensor 自动切分、多级灵活流水线处理、网络通信优先级调度、ZeroMQ 优化、共享内存 zero-copy、RDMA 实现和 PS 端多队列多线程优化。


更详细的实现原理参见这里

性能表现

测试中,BytePS 团队使用了公有云上的虚拟机,每个虚拟机有 8 张 Tesla V100 16GB GPU,GPU 之间通过 NVLink 进行高速互连。每个 GPU 上的 batch size 选取为 64。虚拟机之间通过 20Gbps 的 TCP/IP 网络进行连接。在这种情况下,由于机器之内带宽足够大,TCP/IP 的网络带宽则成为了主要瓶颈。


BytePS 选择了 Resnet50 和 VGG16 两个模型进行评测,其中 Resnet50 是计算密集型的模型(对通信要求低,优化空间小),VGG16 是通信密集型的模型(对通信要求高,优化空间大),对照组选择了目前市面上最流行的通信框架之一 Horovod-NCCL(基于 allreduce 算法实现),性能指标为每秒钟训练的 ImageNet 图片数量,越高代表越好。




通过两组实验结果可以看出,对于计算密集型的 Resnet50 模型,BytePS 性能超过 Horovod-NCCL 近 44%;而对于通信密集型的 VGG16 模型,BytePS 性能可以超过 Horovod-NCCL 将近 100%。


BytePS 团队也在配有 100Gbps 的 RDMA 网络的私有集群做了测试,BytePS 也有一定的性能提升,具体分析参见Github


除了在性能上超出目前其他所有分布式训练框架外,BytePS 可以兼容 Tensorflow、PyTorch、MXNet 等训练框架。BytePS 团队表示,开发者只需要非常少的改动,就可以使用 BytePS 框架进行分布式训练,享受 BytePS 带来的高性能。


此前行业里的 PS 实现,都是针对特定通用框架,例如专门为 TensorFlow 实现的 PS,也有专门为 MXNet 实现的 PS。


字节跳动人工智能实验室开源的 BytePS,通过实现一个通用的抽象层,抽象层可以被各种通用框架引用,实现了同时支持多个框架的可能性,因此能够支持 Tensorflow、PyTorch、MXNet 等行业主流训练框架。



BytePS 提供了 TensorFlow、PyTorch、 MXNet 以及 Keras 的插件,用户只要在代码中引用 BytePS 的插件,就可以获得高性能的分布式训练。BytePS 的核心逻辑,则实现在 BytePS core 里。具体的通信细节,完全由 BytePS 完成,用户完全不需要操心。

快速上手 BytePS

使用 BytePS 前,假设你已经安装了以下一种或更多框架:TensorFlow、Keras、PyTorch、MXNet 等。BytePS 主要基于 CUDA 和 NCCL。


复制 BytePS 和第三方依赖:


git clone --recurse-submodules https://github.com/bytedance/byteps
复制代码


进入 BytePS 文件目录,并安装:


python setup.py install
复制代码


注意:你可能需要设置 BYTEPS_USE_RDMA=1 来安装 RDMA 支持。


现在你可以试试我们已有的示例。假设你使用 MXNet,并想尝试 Resnet50 训练基准。


export NVIDIA_VISIBLE_DEVICES=0,1 \       DMLC_NUM_WORKER=1 \       DMLC_NUM_SERVER=1 \       DMLC_WORKER_ID=0 \       DMLC_ROLE=worker \       DMLC_PS_ROOT_URI=10.0.0.1 \       DMLC_PS_ROOT_PORT=1234 \       DMLC_INTERFACE=eth0
python byteps/launcher/launch.py byteps/example/mxnet/train_imagenet_byteps.py --benchmark 1 --batch-size=32
复制代码


对于分布式训练,你可能需要建立一个服务器镜像。研发团队提供了 Docker 文件作为例子。你可以将同样的镜像用于调度和服务器。


关于如何启动分布式任务的内容和更多上手教程可参考相关文档

如何在已有代码中使用 BytePS

虽然内核设计有所不同,但 BytePS 和 Horovod 接口高度兼容,我们希望通过 Horovod 接口减少用户测试 BytePS 的工作量。


如果你的任务只依赖于 Horovod 的 allreduce 和广播,你可以在一分钟内切换到 BytePS。只需要用 import byteps.tensorflow as bps 替换 import horovod.tensorflow as hvd,并将代码中所有的 hvd 替换成 bps 即可。

BytePS 的局限和未来计划

BytePS 目前不支持单纯的 CPU 训练,其中一个原因是 BytePS 的部分底层逻辑可能无法支持。因此你需要使用 CUDA 或 NCCL 来构建和运行 BytePS。


未来 BytePS 计划增加以下特性:


  • 稀疏模型训练

  • 异步训练

  • 容错机制

  • 延迟减缓


BytePS 团队表示,深度学习领域仍然有非常大的空间和可能性值得行业同仁们一起探索,开源 BytePS,是希望利用 BytePS 在性能和功能上的先进性,降低开发者和深度学习领域参与者们的门槛,帮助更多同道中人一起探索深度学习,提升 AI 应用效率。


2019-06-27 17:4812171
用户头像
蔡芳芳 InfoQ 总编辑

发布了 819 篇内容, 共 616.5 次阅读, 收获喜欢 2822 次。

关注

评论 3 条评论

发布
用户头像
评论来了, 水一发字节跳动的招聘: https://job.toutiao.com/2018/spring_referral/?token=gJzTw%2BzsbdCQSiVyZBefSg%3D%3D&key=MzUyNzAsMzIxMTcsMzcxMDQsMzUyMjgsMzY3NjgsMzY3NjYsMTg1NTI%3D
2019-06-29 17:20
回复
用户头像
为啥感觉InfoQ上的文章通常都没人评论呢?
2019-06-28 13:31
回复
也想知道原因。
2019-06-28 14:26
回复
没有更多了
发现更多内容

主成分分析PCA与奇异值分解SVD-高维数据可视化以及参数n_components

烧灯续昼2002

机器学习 算法 降维 sklearn 11月月更

安装 Docker Compose

蜗牛也是牛

作业-week5-设计微博系统中”微博评论”的高性能高可用计算架构

in9

Python进阶(四十五)走进requests库

No Silver Bullet

Python requests 11月月更

微博系统中”微博评论“的高性能高可用计算架构

小虎

架构训练营

常见用的设计模式以及实战

想要飞的猪

设计模式 spring设计模式

微博评论架构

Johnny

「架构实战营」

架构训练营作业5-微博评论的高性能高可用计算架构

许四多

极速下载 docker镜像

蜗牛也是牛

[力扣] 剑指 Offer 第二天 - 复杂链表的复制

陈明勇

Go 链表 数据结构与算法 11月月更

大厂前端面试考什么?

loveX001

JavaScript

Python进阶(四十六)Python3实现SMTP发送邮件详细教程

No Silver Bullet

发送邮件 SMTP pyhton 11月月更

dubbo + zookeeper + spring 分布式系统

石臻臻的杂货铺

spring dubbo 11月月更

易观分析:2022年Q3中国网络零售B2C市场交易规模达21971.5亿元

易观分析

零售 交易

js事件循环与macro&micro任务队列-前端面试进阶

loveX001

JavaScript

JAVA逻辑运算符

默默的成长

前端 java; 11月月更

图解Kafka的RecordBatch结构

石臻臻的杂货铺

kafka Kafka实战 11月月更

python数据分析-pandas基础(1)

AIWeker

Python 数据分析 pandas 11月月更

API工具常见分类

阿泽🧸

11月月更 API工具

在MUI框架中对于事件绑定与取消和监听的触发自定义的深入运用与实战

恒山其若陋兮

mui 11月月更

架构实战营模块5作业

冷夫冲

架构训练营 架构实战

2022-11-16:给你一个数组 nums,我们可以将它按一个非负整数 k 进行轮调, 例如,数组为 nums = [2,4,1,3,0], 我们按 k = 2 进行轮调后,它将变成 [1,3,0,

福大大架构师每日一题

算法 rust 福大大

【愚公系列】2022年11月 微信小程序-app.json配置属性之plugins

愚公搬代码

11月月更

Python进阶(四十七)python3使用pyinstaller实现将py文件打包成exe文件

No Silver Bullet

Python pyinstaller 11月月更

MUI对于原生导航栏的新页面与关闭页面的预加载的底层代码深入运用【MUI】

恒山其若陋兮

mui 11月月更

用户画像分析的应用及搭建

穿过生命散发芬芳

11月月更 用户画像分析

从零到一落地接口自动化测试

老张

自动化测试

静悄悄“双十一”背后的“喧嚣”

易观分析

双十一 消费 购物

2022 Rebase Hackathon启动

谢锐 | Frozen

区块链 defi 黑客松 web3 layer2

JS模块化—CJS&AMD&CMD&ES6-前端面试知识点查漏补缺

loveX001

JavaScript

MUI实战之页面初始化与创建子页面对于新页面的实战心得

恒山其若陋兮

前端 mui 11月月更

字节跳动开源高性能分布式训练框架BytePS:兼容TensorFlow等_AI&大模型_蔡芳芳_InfoQ精选文章