50万奖金+官方证书,深圳国际金融科技大赛正式启动,点击报名 了解详情
写点什么

BERT 为什么是 NLP 的革新者

  • 2020-09-18
  • 本文字数:1765 字

    阅读完需:约 6 分钟

BERT为什么是NLP的革新者

本文最初发表在 Towards Data Science 博客,由 InfoQ 中文站翻译并分享。


语言模型 BERT 可以大幅提升许多任务的性能,那么它成功的背后是什么呢?

什么是 BERT?

BERT,全称 Bidirectional Encoder Representation from Transformers,是一款于 2018 年发布,在包括问答和语言理解等多个任务中达到顶尖性能的语言模型。它不仅击败了之前最先进的计算模型,而且在答题方面也有超过人类的表现。


BERT 是一个可以将文字转换为数字的计算模型。这个过程是至关重要的,因为机器学习模型需要以数字而非文字为输入,而一款可以将文字转换为数字的算法让人们可以直接使用原始的文本格式数据训练机器学习模型。



BERT 是可以将文字转换为数字的计算模型,图源Devlin et al., 2019

BERT 为何如此优秀?

对作者来说,BERT 的优秀之处主要在于以下三点:


  • 第一:使用大量数据预训练

  • 第二:可以处理文字语意

  • 第三:开源

1:BERT 使用海量数据预训练

BERT 提供两种不同大小模型,BERT-base(使用 BookCorpus 数据集训练,约 8 亿字)以及 BERT-large(使用英文维基百科训练,约 25 亿字)。两种模型均使用了巨大的训练集,而任何一个机器学习领域的人都明白,大数据的力量是相当无敌的。正所谓“熟读唐诗三百遍,不会做诗也会吟”,在见过 25 亿单词之后,再看到新单词时你也能猜到它会是什么意思。


因为 BERT 的预训练非常优秀,所以即使是应用在小型数据集上也能保持不错的性能。举例来说,作者最近参与了一个开发新冠(COVID-19)自动问答系统的项目,在没有进一步微调的情况下,BERT-base 在作者使用的数据集中的 15 个类别上,准确率达到 58.1%。更令人惊叹的时,“COVID”这个词甚至不在 BERT 的词汇库中,但它依然获得了相当高的准确率。

2: BERT 可以处理语意

之前的词嵌入方法,无论一个词处于什么样的语境下,都会返回同一个向量。而 BERT 则会根据上下文,为同一个词返回不同的向量。例如,在下面的例子中,旧方法会为“trust”返回相同的嵌入。


I can’t trust you.(我不能相信你。)

They have no trust left for their friend. (他们对自己的朋友已经没有信任感。)

He has a trust fund. (他有一个信托基金。)


相比之下,BERT 可以处理语意,根据“trust”语境的不同返回不同的嵌入。如果算法可以分辨出一个词使用情况的不同,就能获得更多的信息,性能也有可能得到提升。另一个可以处理上下文的语言建模方法是ELMo

3:BERT 是开源的

开源是个大加分项。机器学习领域中的很多项目都被开源化,因为代码开源可以让其他的研究人员轻松应用你的想法,从而促进项目的发展。BERT 的代码发布在了GitHub上,同时还附有代码使用相关的 README 文件,这些深入信息对于任何想要使用 BERT 的人来说有很大帮助。


在作者最开始使用 BERT 时,只花费了几分钟下载能运行的 BERT 模型,然后只用不到一小时的时间成功写出可以用在数据集中的代码。


一个非常强大的语言模型会同时具备上文中提到的全部三个方面,而这个模型可以在 SQuAD、GLUE 和 MultiNLI 等大名鼎鼎的数据集上会达到最顶尖的性能。它所拥有的这些巨大优势是让它如此强大和适用的原因所在。


BERT 利用大量数据进行预处理,用户可以直接将其应用在自己相对较小的数据集上。BERT 有上下文嵌入,性能会很不错。BERT 是开源的,用户可以直接下载并使用。它的应用范围如此之广,这就是为什么说 BERT 彻底改变了 NLP。


谷歌的研究人员,也是 BERT 的最初创造者,计划利用它来理解谷歌搜索,并提高谷歌自动问答服务的准确性。后来人们发现,BERT 的用处不仅仅只局限于谷歌搜索。BERT 有望改善计算机语言学的关键领域,包括聊天机器人、自动问答、总结和文本情感分析。自一年多前 BERT 的发布以来,其论文的引用已超过 8,500 次,其广泛实用性不难看出。此外,自 BERT 发表后,最大的国际 NLP 会议 Association for Computational Linguistics(ACL)的投稿量也翻了一番,从 2018 年的 1544 篇直接增到 2019 年的 2905 篇。


BERT 将继续为 NLP 领域带来革命性的变化,它为小型数据库中各种类型的任务提供实现高性能的机会。


延伸阅读:


Devlin et al.原论文(https://arxiv.org/pdf/1810.04805.pdf


ELMo,使用上下文嵌入的类似语言模型:


https://arxiv.org/pdf/1802.05365.pdf


原文链接


https://towardsdatascience.com/bert-why-its-been-revolutionizing-nlp-5d1bcae76a13


2020-09-18 08:002550
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 594.2 次阅读, 收获喜欢 1981 次。

关注

评论

发布
暂无评论
发现更多内容

第八课作业

杰语

TP钱包Defi挖矿系统开发【专业定制】

获客I3O6O643Z97

区块链 DeFi质押挖矿 质押挖矿

架构师实战营 模块八作业(设计消息队列存储消息数据的MySQL表格)

代廉洁

架构实战营

使用 Open Policy Agent 实现可信镜像仓库检查

张晓辉

Kubernetes 安全 OPA

Redisson 分布式锁源码 08:MultiLock 加锁与锁释放

程序员小航

Java 源码 分布式锁 redisson redison

查找——HASH

若尘

数据结构 hash

Spring源码解析 -- SpringWeb请求映射Map初始化

Java spring 源码解析

hive 与传统数据库对比

五分钟学大数据

hive 7月日更

🏆「作者推荐」【JVM 性能分析】精心准备了一套 JVM 分析工具的锦囊(中部)

码界西柚

JVM 性能分析 7月日更

bzb矿机软件系统开发

jTDS 驱动导致 cpu 100%

顾五木

cpu占用100% 线上程序问题

为什么搞一个副业项目如此之难?

张理查

完了,又火一个项目

程序员鱼皮

JavaScript GitHub Vue 大前端 React

Go 语言中一些不太常见的优化

Xargin

性能优化 后端 Go 语言

学点项目管理,对咱程序员很重要~

后台技术汇

项目管理 项目管理工具

Ubuntu Server 20.04搭建kafka集群

玏佾

kafka kafka配置 kafka数据 Ubuntu20.04

【Flutter 专题】91图解 Dart 单线程实现异步处理之 Future (二)

阿策小和尚

Flutter 小菜 0 基础学习 Flutter Android 小菜鸟 7月日更

external-attacher源码分析(2)-核心处理逻辑分析

良凯尔

Kubernetes 源码分析 Ceph CSI Kubernetes Plugin

免费分享Java Web 开发的优秀图书

Java入门到架构

Java Java书籍推荐

话题讨论| 帮朋友拼多多助力会导致银行卡被盗刷?

石云升

拼多多 话题讨论 7月日更

yarn 的基本介绍和产生背景

大数据技术指南

YARN 7月日更

你有多少密码是123456

MySQL从删库到跑路

密码管理

币安链智能合约Dapp系统开发方案

薇電13242772558

智能合约

淘筱优软件开发|淘筱优APP系统开发

Uranus天王星系统软件开发介绍

趣玩吧EVO软件系统开发方案

FIL币挖矿合法吗?FIL挖矿会叫停吗?

Apollo配置中心如何实现配置热发布

慕枫技术笔记

微服务 后端 配置中心

架构实战营 - 模块 8- 作业

泄矢的呼啦圈

架构实战营

FIL分币系统源码开发App

获客I3O6O643Z97

IPFS怎么挖矿 ipfs有什么用 质押挖矿 fil币

Python+OpenCV创建级联文件(Windows7/10环境)

不脱发的程序猿

Python OpenCV 目标对象识别 OpenCV创建级联文件

BERT为什么是NLP的革新者_AI&大模型_Jerry Wei_InfoQ精选文章