AICon 深圳站聚焦 Agent 技术、应用与生态,大咖分享实战干货 了解详情
写点什么

DeepCTR:易用可扩展的深度学习点击率预测算法库

  • 2019-05-08
  • 本文字数:2124 字

    阅读完需:约 7 分钟

DeepCTR:易用可扩展的深度学习点击率预测算法库

这个项目主要是对目前的一些基于深度学习的点击率预测算法进行了实现,如 PNN , WDL , DeepFM , MLR , DeepCross , AFM , NFM , DIN , DIEN , xDeepFM , NFFM , AutoInt 等,并且对外提供了一致的调用接口。关于每种算法的介绍这里就不细说了,大家可以看论文,看知乎,看博客,讲的都很清楚。


这里简单从整体上介绍一下 DeepCTR 这个库。首先这个不是一个框架,它不具有学术创新意义,目前也没有解决什么复杂的工程问题。它面向的对象是那些对深度学习以及 CTR 预测算法感兴趣的同学,可以利用这个库:


  1. 从一个统一视角来看待各个模型

  2. 快速地进行简单的对比实验

  3. 利用已有的组件快速构建新的模型

统一视角

DeepCTR 通过对现有的基于深度学习的点击率预测模型的结构进行抽象总结,在设计过程中采用模块化的思路,各个模块自身具有高复用性,各个模块之间互相独立。基于深度学习的点击率预测模型按模型内部组件的功能可以划分成以下 4 个模块:输入模块,嵌入模块,特征提取模块,预测输出模块。


快速实验


Criteo 数据集预览


下面是一个简单的用 DeepFM 模型在 criteo 数据集上训练的的例子。


import pandas as pdfrom sklearn.preprocessing import LabelEncoder, MinMaxScalerfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import log_loss, roc_auc_scorefrom deepctr.models import DeepFMfrom deepctr.utils import SingleFeatif __name__ == "__main__":
data = pd.read_csv('./criteo_sample.txt')
sparse_features = ['C' + str(i) for i in range(1, 27)] dense_features = ['I'+str(i) for i in range(1, 14)]
data[sparse_features] = data[sparse_features].fillna('-1', ) data[dense_features] = data[dense_features].fillna(0,) target = ['label'] # 1.Label Encoding for sparse features,and do simple Transformation for dense features for feat in sparse_features: lbe = LabelEncoder() data[feat] = lbe.fit_transform(data[feat]) mms = MinMaxScaler(feature_range=(0, 1)) data[dense_features] = mms.fit_transform(data[dense_features]) # 2.count #unique features for each sparse field,and record dense feature field name sparse_feature_list = [SingleFeat(feat, data[feat].nunique()) for feat in sparse_features] dense_feature_list = [SingleFeat(feat, 0) for feat in dense_features] # 3.generate input data for model train, test = train_test_split(data, test_size=0.2) train_model_input = [train[feat.name].values for feat in sparse_feature_list] + \ [train[feat.name].values for feat in dense_feature_list] test_model_input = [test[feat.name].values for feat in sparse_feature_list] + \ [test[feat.name].values for feat in dense_feature_list] # 4.Define Model,train,predict and evaluate model = DeepFM({"sparse": sparse_feature_list, "dense": dense_feature_list}, final_activation='sigmoid') model.compile("adam", "binary_crossentropy", metrics=['binary_crossentropy'], ) history = model.fit(train_model_input, train[target].values, batch_size=256, epochs=10, verbose=2, validation_split=0.2, ) pred_ans = model.predict(test_model_input, batch_size=256)
print("test LogLoss", round(log_loss(test[target].values, pred_ans), 4)) print("test AUC", round(roc_auc_score(test[target].values, pred_ans), 4)))
复制代码

快速构建新模型

所有的模型都是严格按照 4 个模块进行搭建的,输入和嵌入以及输出基本都是公用的,每个模型的差异之处主要在特征提取部分。


下面是 DeepFM 模型的特征提取核心代码,大家也可以利用这些已有的组件去构建自己想要的模型。


fm_input = Concatenate(axis=1)(embed_list)#将输入拼接成FM层需要的shapedeep_input = Flatten()(fm_input)#将输入拼接成Deep网络需要的shapefm_out = FM()(fm_input)#调用FM组件deep_out = MLP(hidden_size, activation, l2_reg_deep, keep_prob,use_bn, seed)(deep_input)#调用Deep网络组件deep_logit = Dense(1, use_bias=False, activation=None)(deep_out)
复制代码

如何使用呢!?

首先确保你的 python 版本 >=3.4 然后:


pip install deepctr
复制代码


就可以安装成功啦!剩下的我建议你先来项目仓库点个赞,然后再去看说明文档!


DeepCTR 项目地址:


https://github.com/shenweichen/DeepCTR


Welcome to DeepCTR’s documentation!


地址:


https://deepctr-doc.readthedocs.io/en/latest/


最后就是欢迎感兴趣的同学一起来维护建设和交流,无论是文档,还是开发,还是测试,都欢迎~

作者介绍:

沈伟臣,阿里巴巴算法工程师,硕士毕业于浙江大学计算机学院。对机器学习,强化学习技术及其在推荐系统领域内的应用具有浓厚兴趣。


本文来自 沈伟臣 在 DataFun 社区的演讲,由 DataFun 编辑整理。


2019-05-08 08:006695

评论

发布
暂无评论
发现更多内容

macOS 14 Sonoma 14.1.1正式版(最新苹果系统) pkg完整安装包

Rose

苹果系统 macOS 14 Sonoma Mac14系统

海外HTTP代理哪家最好用?Rola-IP与StormProxies的全方位数据对比

Geek_bf375d

8款好用的笔记软件,让你的读书笔记独一无二!

彭宏豪95

读书笔记 效率 软件推荐 在线白板 笔记软件

云电脑与5G网络的结合将会带来什么

青椒云云电脑

云电脑

海外IP代理rola-ip表现突出,全球覆盖面广,技术支持优秀

Geek_bf375d

IP代理哪家好用? 必看经典文

Geek_bf375d

低代码工具的常见用例与受众市场

树上有只程序猿

低代码

Python 机器学习入门:数据集、数据类型和统计学

小万哥

Python 程序员 软件 后端 开发

剑指数据结构—实现动态数组

少年游侠客

数据结构 数组 ArrayList Java’

【Data & AI Con Shanghai 2023】嘉宾专访|西电王皓:认清边界 大胆创新

白玉兰开源

人工智能 白玉兰开源

Mac 版截图工具链

Eric 老乌龟

macos 工具

“箭在弦上”的边缘计算,更需要冷静和智慧

脑极体

服务器

ROLA-IP海外IP代理为第四届全球跨境电子商务大会注入活力

Geek_bf375d

Barcode for Mac:快速生成各类条形码

Rose

mac软件下载 条形码设计 Barcode for Mac Barcode 下载

ps cc2019 Mac中文直装版v20.0.10 兼容M1

Rose

ps cc2019 Photoshop2019破解版 PS2019 Mac中文版下载

瓴羊X阿里云上的Salesforce联合解决方案正式发布

ToB行业头条

Unity中国全面支持OpenHarmony游戏开发,多款游戏率先完成适配

最新动态

哪些行业发展需要用到代理IP?罗拉ROLA-IP告诉你什么是专业

Geek_bf375d

荣誉 | 观测云登榜「2023 中国好 SaaS TOP 10 SaaS 企业 」

观测云

可观测性 SaaS

投资机构Janus Capital Group为Rola-IP品牌融资700万美元

Geek_bf375d

Linux cat命令

芯动大师

Mac矢量图设计Sketch for Mac v99中文激活版 永久使用

Rose

sketch Mac Mac矢量图设计 Sketch 99新功能 Sketch 中文版下载

华为云开源 | 线下meetup · 电子科技大学站圆满收官

华为云开源

云原生 开源项目 开源社区

一物一码需求,标签制作功能轻松解决

草料二维码

二维码 二维码生成 标签制作 一物一码

分布式AI在LLM时代的技术深度探索

不在线第一只蜗牛

人工智能 AI lee

销售易取得500强客户背后的实践与进化

B Impact

领跑同一阵营!百分点科技入选Forrester AI/ML权威报告

百分点科技技术团队

人工智能 数据科学 百分点科技

聊聊低代码技术

互联网工科生

软件开发 低代码

DeepCTR:易用可扩展的深度学习点击率预测算法库_数据库_DataFunTalk_InfoQ精选文章