2025上半年,最新 AI实践都在这!20+ 应用案例,任听一场议题就值回票价 了解详情
写点什么

深度增强学习方向论文整理

  • 2019-11-29
  • 本文字数:5536 字

    阅读完需:约 18 分钟

深度增强学习方向论文整理

一. 开山鼻祖 DQN

  1. Playing Atari with Deep Reinforcement Learning,V. Mnih et al., NIPS Workshop, 2013.

  2. Human-level control through deep reinforcement learning, V. Mnih et al., Nature, 2015.

二. DQN 的各种改进版本(侧重于算法上的改进)

  1. Dueling Network Architectures for Deep Reinforcement Learning. Z. Wang et al., arXiv, 2015.

  2. Prioritized Experience Replay, T. Schaul et al., ICLR, 2016.

  3. Deep Reinforcement Learning with Double Q-learning, H. van Hasselt et al., arXiv, 2015.

  4. Increasing the Action Gap: New Operators for Reinforcement Learning, M. G. Bellemare et al., AAAI, 2016.

  5. Dynamic Frame skip Deep Q Network, A. S. Lakshminarayanan et al., IJCAI Deep RL Workshop, 2016.

  6. Deep Exploration via Bootstrapped DQN, I. Osband et al., arXiv, 2016.

  7. How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies, V. François-Lavet et al., NIPS Workshop, 2015.

  8. Learning functions across many orders of magnitudes,H Van Hasselt,A Guez,M Hessel,D Silver

  9. Massively Parallel Methods for Deep Reinforcement Learning, A. Nair et al., ICML Workshop, 2015.

  10. State of the Art Control of Atari Games using shallow reinforcement learning

  11. Learning to Play in a Day: Faster Deep Reinforcement Learning by Optimality Tightening(11.13 更新)

  12. Deep Reinforcement Learning with Averaged Target DQN(11.14 更新)

  13. Safe and Efficient Off-Policy Reinforcement Learning(12.20 更新)

  14. The Predictron: End-To-End Learning and Planning (1.3 更新)

三. DQN 的各种改进版本(侧重于模型的改进)

  1. Deep Recurrent Q-Learning for Partially Observable MDPs, M. Hausknecht and P. Stone, arXiv, 2015.

  2. Deep Attention Recurrent Q-Network

  3. Control of Memory, Active Perception, and Action in Minecraft, J. Oh et al., ICML, 2016.

  4. Progressive Neural Networks

  5. Language Understanding for Text-based Games Using Deep Reinforcement Learning

  6. Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks

  7. Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation

  8. Recurrent Reinforcement Learning: A Hybrid Approach

  9. Value Iteration Networks, NIPS, 2016 (12.20 更新)

  10. MazeBase:A sandbox for learning from games(12.20 更新)

  11. Strategic Attentive Writer for Learning Macro-Actions(12.20 更新)

四. 基于策略梯度的深度强化学习

深度策略梯度:


  1. End-to-End Training of Deep Visuomotor Policies

  2. Learning Deep Control Policies for Autonomous Aerial Vehicles with MPC-Guided Policy Search

  3. Trust Region Policy Optimization


深度行动者评论家算法:


  1. Deterministic Policy Gradient Algorithms

  2. Continuous control with deep reinforcement learning

  3. High-Dimensional Continuous Control Using Using Generalized Advantage Estimation

  4. Compatible Value Gradients for Reinforcement Learning of Continuous Deep Policies

  5. Deep Reinforcement Learning in Parameterized Action Space

  6. Memory-based control with recurrent neural networks

  7. Terrain-adaptive locomotion skills using deep reinforcement learning

  8. Compatible Value Gradients for Reinforcement Learning of Continuous Deep Policies

  9. SAMPLE EFFICIENT ACTOR-CRITIC WITH EXPERIENCE REPLAY(11.13 更新)


搜索与监督:


  1. End-to-End Training of Deep Visuomotor Policies

  2. Interactive Control of Diverse Complex Characters with Neural Networks


连续动作空间下探索改进:


  1. Curiosity-driven Exploration in DRL via Bayesian Neuarl Networks


结合策略梯度和 Q 学习:


  1. Q-PROP: SAMPLE-EFFICIENT POLICY GRADIENT WITH AN OFF-POLICY CRITIC(11.13 更新)

  2. PGQ: COMBINING POLICY GRADIENT AND Q-LEARNING(11.13 更新)


其它策略梯度文章:


  1. Gradient Estimation Using Stochastic Computation Graphs

  2. Continuous Deep Q-Learning with Model-based Acceleration

  3. Benchmarking Deep Reinforcement Learning for Continuous Control

  4. Learning Continuous Control Policies by Stochastic Value Gradients

  5. Generalizing Skills with Semi-Supervised Reinforcement Learning(12.20 更新)

五. 分层 DRL

  1. Deep Successor Reinforcement Learning

  2. Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation

  3. Hierarchical Reinforcement Learning using Spatio-Temporal Abstractions and Deep Neural Networks

  4. Stochastic Neural Networks for Hierarchical Reinforcement Learning – Authors: Carlos Florensa, Yan Duan, Pieter Abbeel (11.14 更新)

六. DRL 中的多任务和迁移学习

  1. ADAAPT: A Deep Architecture for Adaptive Policy Transfer from Multiple Sources

  2. A Deep Hierarchical Approach to Lifelong Learning in Minecraft

  3. Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning

  4. Policy Distillation

  5. Progressive Neural Networks

  6. Universal Value Function Approximators

  7. Multi-task learning with deep model based reinforcement learning(11.14 更新)

  8. Modular Multitask Reinforcement Learning with Policy Sketches (11.14 更新)

七. 基于外部记忆模块的 DRL 模型

  1. Control of Memory, Active Perception, and Action in Minecraft

  2. Model-Free Episodic Control

八. DRL 中探索与利用问题

  1. Action-Conditional Video Prediction using Deep Networks in Atari Games

  2. Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks

  3. Deep Exploration via Bootstrapped DQN

  4. Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation

  5. Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models

  6. Unifying Count-Based Exploration and Intrinsic Motivation

  7. #Exploration: A Study of Count-Based Exploration for Deep Reinforcemen Learning(11.14 更新)

  8. Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning(11.14 更新)

  9. VIME: Variational Information Maximizing Exploration(12.20 更新)

九. 多 Agent 的 DRL

  1. Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks

  2. Multiagent Cooperation and Competition with Deep Reinforcement Learning

十. 逆向 DRL

  1. Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization

  2. Maximum Entropy Deep Inverse Reinforcement Learning

  3. Generalizing Skills with Semi-Supervised Reinforcement Learning(11.14 更新)

十一. 探索+监督学习

  1. Deep learning for real-time Atari game play using offline Monte-Carlo tree search planning

  2. Better Computer Go Player with Neural Network and Long-term Prediction

  3. Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.

十二. 异步 DRL

  1. Asynchronous Methods for Deep Reinforcement Learning

  2. Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU(11.14 更新)

十三:适用于难度较大的游戏场景

  1. Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.

  2. Strategic Attentive Writer for Learning Macro-Actions

  3. Unifying Count-Based Exploration and Intrinsic Motivation

十四:单个网络玩多个游戏

  1. Policy Distillation

  2. Universal Value Function Approximators

  3. Learning values across many orders of magnitude

十五:德州 poker

  1. Deep Reinforcement Learning from Self-Play in Imperfect-Information Games

  2. Fictitious Self-Play in Extensive-Form Games

  3. Smooth UCT search in computer poker

十六:Doom 游戏

  1. ViZDoom: A Doom-based AI Research Platform for Visual Reinforcement Learning

  2. Training Agent for First-Person Shooter Game with Actor-Critic Curriculum Learning

  3. Playing FPS Games with Deep Reinforcement Learning

  4. LEARNING TO ACT BY PREDICTING THE FUTURE(11.13 更新)

  5. Deep Reinforcement Learning From Raw Pixels in Doom(11.14 更新)

十七:大规模动作空间

  1. Deep Reinforcement Learning in Large Discrete Action Spaces

十八:参数化连续动作空间

  1. Deep Reinforcement Learning in Parameterized Action Space

十九:Deep Model

  1. Learning Visual Predictive Models of Physics for Playing Billiards

  2. J. Schmidhuber, On Learning to Think: Algorithmic Information Theory for Novel Combinations of Reinforcement Learning Controllers and Recurrent Neural World Models, arXiv, 2015. arXiv

  3. Learning Continuous Control Policies by Stochastic Value Gradients


4.Data-Efficient Learning of Feedback Policies from Image Pixels using Deep Dynamical Models


  1. Action-Conditional Video Prediction using Deep Networks in Atari Games

  2. Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models

二十:DRL 应用

机器人领域:


  1. Trust Region Policy Optimization

  2. Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control

  3. Path Integral Guided Policy Search

  4. Memory-based control with recurrent neural networks

  5. Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection

  6. Learning Deep Neural Network Policies with Continuous Memory States

  7. High-Dimensional Continuous Control Using Generalized Advantage Estimation

  8. Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization

  9. End-to-End Training of Deep Visuomotor Policies

  10. DeepMPC: Learning Deep Latent Features for Model Predictive Control

  11. Deep Visual Foresight for Planning Robot Motion

  12. Deep Reinforcement Learning for Robotic Manipulation

  13. Continuous Deep Q-Learning with Model-based Acceleration

  14. Collective Robot Reinforcement Learning with Distributed Asynchronous Guided Policy Search

  15. Asynchronous Methods for Deep Reinforcement Learning

  16. Learning Continuous Control Policies by Stochastic Value Gradients


机器翻译:


  1. Simultaneous Machine Translation using Deep Reinforcement Learning


目标定位:


  1. Active Object Localization with Deep Reinforcement Learning


目标驱动的视觉导航:


  1. Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning


自动调控参数:


  1. Using Deep Q-Learning to Control Optimization Hyperparameters


人机对话:


  1. Deep Reinforcement Learning for Dialogue Generation

  2. SimpleDS: A Simple Deep Reinforcement Learning Dialogue System

  3. Strategic Dialogue Management via Deep Reinforcement Learning

  4. Towards End-to-End Learning for Dialog State Tracking and Management using Deep Reinforcement Learning


视频预测:


  1. Action-Conditional Video Prediction using Deep Networks in Atari Games


文本到语音:


  1. WaveNet: A Generative Model for Raw Audio


文本生成:


  1. Generating Text with Deep Reinforcement Learning


文本游戏:


  1. Language Understanding for Text-based Games Using Deep Reinforcement Learning


无线电操控和信号监控:


  1. Deep Reinforcement Learning Radio Control and Signal Detection with KeRLym, a Gym RL Agent


DRL 来学习做物理实验:


  1. LEARNING TO PERFORM PHYSICS EXPERIMENTS VIA DEEP REINFORCEMENT LEARNING(11.13 更新)


DRL 加速收敛:


  1. Deep Reinforcement Learning for Accelerating the Convergence Rate(11.14 更新)


利用 DRL 来设计神经网络:


  1. Designing Neural Network Architectures using Reinforcement Learning(11.14 更新)

  2. Tuning Recurrent Neural Networks with Reinforcement Learning(11.14 更新)

  3. Neural Architecture Search with Reinforcement Learning(11.14 更新)


控制信号灯:


  1. Using a Deep Reinforcement Learning Agent for Traffic Signal Control(11.14 更新)


自动驾驶:


  1. CARMA: A Deep Reinforcement Learning Approach to Autonomous Driving(12.20 更新)

  2. Deep Reinforcement Learning for Simulated Autonomous Vehicle Control(12.20 更新)

  3. Deep Reinforcement Learning framework for Autonomous Driving(12.20 更新)

二十一:其它方向

避免危险状态:


  1. Combating Deep Reinforcement Learning’s Sisyphean Curse with Intrinsic Fear (11.14 更新)


DRL 中 On-Policy vs. Off-Policy 比较:


  1. On-Policy vs. Off-Policy Updates for Deep Reinforcement Learning(11.14 更新)


注 1:小伙伴们如果觉得论文一个个下载太麻烦,可以私信我,我打包发给你。


注 2:欢迎大家及时补充新的或者我疏漏的文献。


本文转载自 Alex-zhai 知乎账号。


原文链接:https://zhuanlan.zhihu.com/p/23600620


2019-11-29 13:463074

评论

发布
暂无评论
发现更多内容

如果你觉得学习 Git 很枯燥,那是因为你还没玩过这款游戏!

GitHubDaily

git GitHub 编程 程序员 开发者工具

设计模式之观察者模式

设计模式

Rust 与区块链四月月刊

Aimee 阿敏

区块链 rust 加密货币 crypto

业余前端的日常

顿晓

学习 大前端 日常 专家 知识体系

MySQL常用权限说明

一个有志气的DB

MySQL 用户研究

OpenResty部署配置和日志切割

wong

nginx centos openresty

Python 核心技术与进阶 list & tuple

Bonaparte

Mac 使用笔记

FeiLong

游戏夜读 | Scikit-learn迎来0.21之前

game1night

松哥手把手教你定制 Spring Security 中的表单登录

江南一点雨

Java spring Spring Boot spring security

让你高效工作与学习的免费工具(1)

石云升

高效工作 效率工具 工具

聊聊我对技术一些性质的认识

Tanzv

技术 思考 新人

松哥手把手带你入门 Spring Security,别再问密码怎么解密了

江南一点雨

Java spring Spring Boot spring security

严选合伙人(二)

Neco.W

创业 重新理解创业 合伙人

如何在一台计算机上安装多个 JDK 版本

mghio

Java jdk 版本管理工具

《零基础学 Java》 FAQ 之 7-Java 中的内存是怎么分配的

臧萌

Java JVM

Java新技术:封闭类

X.F

Java 架构 编程语言

一文带你看清HTTP所有概念

苹果看辽宁体育

HTTP

更聪明地学习,而不是苦读——《如何高效学习》

mzlogin

学习

尽管HTTP/3已经来了,HTTP/2也得了解啊

清远

网络协议 HTTP

对于程序员,那些既陌生又熟悉的计算机硬件

架构师修行之路

微软 编程 程序员 cpu 架构师

Harbor 2.0的飞跃: OCI 兼容的工件仓库

亨利笔记

Kubernetes 容器 k8s Harbor 镜像

sync.Map源码分析

陈思敏捷

源码 源码分析 Go 语言

谈谈控制感(5):怎么破控制感损失的局

史方远

职场 心理 成长

Xtrabackup的安装使用

一个有志气的DB

MySQL 工具 数据的分片和备份

Android | Tangram动态页面之路(二)介绍

哈利迪

android

从一次排查ES线上问题得出的总结——熔断机制

罗琦

elasticsearch 源码分析 circuit break 熔断

《后浪》产品经理篇(恶搞版)

静陌

产品经理 后浪

Redis稳定性实践

心平气和

redis 缓存 稳定性

回“疫”录(18):536公里的路

小天同学

疫情 回忆录 现实纪录 纪实 返程

面试官:小伙子,听说你看过ThreadLocal源码?(万字图文深度解析ThreadLocal)

一枝花算不算浪漫

源码 并发编程 ThreadLocal

深度增强学习方向论文整理_语言 & 开发_Alex-zhai_InfoQ精选文章