写点什么

深度增强学习方向论文整理

  • 2019-11-29
  • 本文字数:5536 字

    阅读完需:约 18 分钟

深度增强学习方向论文整理

一. 开山鼻祖 DQN

  1. Playing Atari with Deep Reinforcement Learning,V. Mnih et al., NIPS Workshop, 2013.

  2. Human-level control through deep reinforcement learning, V. Mnih et al., Nature, 2015.

二. DQN 的各种改进版本(侧重于算法上的改进)

  1. Dueling Network Architectures for Deep Reinforcement Learning. Z. Wang et al., arXiv, 2015.

  2. Prioritized Experience Replay, T. Schaul et al., ICLR, 2016.

  3. Deep Reinforcement Learning with Double Q-learning, H. van Hasselt et al., arXiv, 2015.

  4. Increasing the Action Gap: New Operators for Reinforcement Learning, M. G. Bellemare et al., AAAI, 2016.

  5. Dynamic Frame skip Deep Q Network, A. S. Lakshminarayanan et al., IJCAI Deep RL Workshop, 2016.

  6. Deep Exploration via Bootstrapped DQN, I. Osband et al., arXiv, 2016.

  7. How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies, V. François-Lavet et al., NIPS Workshop, 2015.

  8. Learning functions across many orders of magnitudes,H Van Hasselt,A Guez,M Hessel,D Silver

  9. Massively Parallel Methods for Deep Reinforcement Learning, A. Nair et al., ICML Workshop, 2015.

  10. State of the Art Control of Atari Games using shallow reinforcement learning

  11. Learning to Play in a Day: Faster Deep Reinforcement Learning by Optimality Tightening(11.13 更新)

  12. Deep Reinforcement Learning with Averaged Target DQN(11.14 更新)

  13. Safe and Efficient Off-Policy Reinforcement Learning(12.20 更新)

  14. The Predictron: End-To-End Learning and Planning (1.3 更新)

三. DQN 的各种改进版本(侧重于模型的改进)

  1. Deep Recurrent Q-Learning for Partially Observable MDPs, M. Hausknecht and P. Stone, arXiv, 2015.

  2. Deep Attention Recurrent Q-Network

  3. Control of Memory, Active Perception, and Action in Minecraft, J. Oh et al., ICML, 2016.

  4. Progressive Neural Networks

  5. Language Understanding for Text-based Games Using Deep Reinforcement Learning

  6. Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks

  7. Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation

  8. Recurrent Reinforcement Learning: A Hybrid Approach

  9. Value Iteration Networks, NIPS, 2016 (12.20 更新)

  10. MazeBase:A sandbox for learning from games(12.20 更新)

  11. Strategic Attentive Writer for Learning Macro-Actions(12.20 更新)

四. 基于策略梯度的深度强化学习

深度策略梯度:


  1. End-to-End Training of Deep Visuomotor Policies

  2. Learning Deep Control Policies for Autonomous Aerial Vehicles with MPC-Guided Policy Search

  3. Trust Region Policy Optimization


深度行动者评论家算法:


  1. Deterministic Policy Gradient Algorithms

  2. Continuous control with deep reinforcement learning

  3. High-Dimensional Continuous Control Using Using Generalized Advantage Estimation

  4. Compatible Value Gradients for Reinforcement Learning of Continuous Deep Policies

  5. Deep Reinforcement Learning in Parameterized Action Space

  6. Memory-based control with recurrent neural networks

  7. Terrain-adaptive locomotion skills using deep reinforcement learning

  8. Compatible Value Gradients for Reinforcement Learning of Continuous Deep Policies

  9. SAMPLE EFFICIENT ACTOR-CRITIC WITH EXPERIENCE REPLAY(11.13 更新)


搜索与监督:


  1. End-to-End Training of Deep Visuomotor Policies

  2. Interactive Control of Diverse Complex Characters with Neural Networks


连续动作空间下探索改进:


  1. Curiosity-driven Exploration in DRL via Bayesian Neuarl Networks


结合策略梯度和 Q 学习:


  1. Q-PROP: SAMPLE-EFFICIENT POLICY GRADIENT WITH AN OFF-POLICY CRITIC(11.13 更新)

  2. PGQ: COMBINING POLICY GRADIENT AND Q-LEARNING(11.13 更新)


其它策略梯度文章:


  1. Gradient Estimation Using Stochastic Computation Graphs

  2. Continuous Deep Q-Learning with Model-based Acceleration

  3. Benchmarking Deep Reinforcement Learning for Continuous Control

  4. Learning Continuous Control Policies by Stochastic Value Gradients

  5. Generalizing Skills with Semi-Supervised Reinforcement Learning(12.20 更新)

五. 分层 DRL

  1. Deep Successor Reinforcement Learning

  2. Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation

  3. Hierarchical Reinforcement Learning using Spatio-Temporal Abstractions and Deep Neural Networks

  4. Stochastic Neural Networks for Hierarchical Reinforcement Learning – Authors: Carlos Florensa, Yan Duan, Pieter Abbeel (11.14 更新)

六. DRL 中的多任务和迁移学习

  1. ADAAPT: A Deep Architecture for Adaptive Policy Transfer from Multiple Sources

  2. A Deep Hierarchical Approach to Lifelong Learning in Minecraft

  3. Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning

  4. Policy Distillation

  5. Progressive Neural Networks

  6. Universal Value Function Approximators

  7. Multi-task learning with deep model based reinforcement learning(11.14 更新)

  8. Modular Multitask Reinforcement Learning with Policy Sketches (11.14 更新)

七. 基于外部记忆模块的 DRL 模型

  1. Control of Memory, Active Perception, and Action in Minecraft

  2. Model-Free Episodic Control

八. DRL 中探索与利用问题

  1. Action-Conditional Video Prediction using Deep Networks in Atari Games

  2. Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks

  3. Deep Exploration via Bootstrapped DQN

  4. Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation

  5. Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models

  6. Unifying Count-Based Exploration and Intrinsic Motivation

  7. #Exploration: A Study of Count-Based Exploration for Deep Reinforcemen Learning(11.14 更新)

  8. Surprise-Based Intrinsic Motivation for Deep Reinforcement Learning(11.14 更新)

  9. VIME: Variational Information Maximizing Exploration(12.20 更新)

九. 多 Agent 的 DRL

  1. Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks

  2. Multiagent Cooperation and Competition with Deep Reinforcement Learning

十. 逆向 DRL

  1. Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization

  2. Maximum Entropy Deep Inverse Reinforcement Learning

  3. Generalizing Skills with Semi-Supervised Reinforcement Learning(11.14 更新)

十一. 探索+监督学习

  1. Deep learning for real-time Atari game play using offline Monte-Carlo tree search planning

  2. Better Computer Go Player with Neural Network and Long-term Prediction

  3. Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.

十二. 异步 DRL

  1. Asynchronous Methods for Deep Reinforcement Learning

  2. Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU(11.14 更新)

十三:适用于难度较大的游戏场景

  1. Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.

  2. Strategic Attentive Writer for Learning Macro-Actions

  3. Unifying Count-Based Exploration and Intrinsic Motivation

十四:单个网络玩多个游戏

  1. Policy Distillation

  2. Universal Value Function Approximators

  3. Learning values across many orders of magnitude

十五:德州 poker

  1. Deep Reinforcement Learning from Self-Play in Imperfect-Information Games

  2. Fictitious Self-Play in Extensive-Form Games

  3. Smooth UCT search in computer poker

十六:Doom 游戏

  1. ViZDoom: A Doom-based AI Research Platform for Visual Reinforcement Learning

  2. Training Agent for First-Person Shooter Game with Actor-Critic Curriculum Learning

  3. Playing FPS Games with Deep Reinforcement Learning

  4. LEARNING TO ACT BY PREDICTING THE FUTURE(11.13 更新)

  5. Deep Reinforcement Learning From Raw Pixels in Doom(11.14 更新)

十七:大规模动作空间

  1. Deep Reinforcement Learning in Large Discrete Action Spaces

十八:参数化连续动作空间

  1. Deep Reinforcement Learning in Parameterized Action Space

十九:Deep Model

  1. Learning Visual Predictive Models of Physics for Playing Billiards

  2. J. Schmidhuber, On Learning to Think: Algorithmic Information Theory for Novel Combinations of Reinforcement Learning Controllers and Recurrent Neural World Models, arXiv, 2015. arXiv

  3. Learning Continuous Control Policies by Stochastic Value Gradients


4.Data-Efficient Learning of Feedback Policies from Image Pixels using Deep Dynamical Models


  1. Action-Conditional Video Prediction using Deep Networks in Atari Games

  2. Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models

二十:DRL 应用

机器人领域:


  1. Trust Region Policy Optimization

  2. Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control

  3. Path Integral Guided Policy Search

  4. Memory-based control with recurrent neural networks

  5. Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection

  6. Learning Deep Neural Network Policies with Continuous Memory States

  7. High-Dimensional Continuous Control Using Generalized Advantage Estimation

  8. Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization

  9. End-to-End Training of Deep Visuomotor Policies

  10. DeepMPC: Learning Deep Latent Features for Model Predictive Control

  11. Deep Visual Foresight for Planning Robot Motion

  12. Deep Reinforcement Learning for Robotic Manipulation

  13. Continuous Deep Q-Learning with Model-based Acceleration

  14. Collective Robot Reinforcement Learning with Distributed Asynchronous Guided Policy Search

  15. Asynchronous Methods for Deep Reinforcement Learning

  16. Learning Continuous Control Policies by Stochastic Value Gradients


机器翻译:


  1. Simultaneous Machine Translation using Deep Reinforcement Learning


目标定位:


  1. Active Object Localization with Deep Reinforcement Learning


目标驱动的视觉导航:


  1. Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning


自动调控参数:


  1. Using Deep Q-Learning to Control Optimization Hyperparameters


人机对话:


  1. Deep Reinforcement Learning for Dialogue Generation

  2. SimpleDS: A Simple Deep Reinforcement Learning Dialogue System

  3. Strategic Dialogue Management via Deep Reinforcement Learning

  4. Towards End-to-End Learning for Dialog State Tracking and Management using Deep Reinforcement Learning


视频预测:


  1. Action-Conditional Video Prediction using Deep Networks in Atari Games


文本到语音:


  1. WaveNet: A Generative Model for Raw Audio


文本生成:


  1. Generating Text with Deep Reinforcement Learning


文本游戏:


  1. Language Understanding for Text-based Games Using Deep Reinforcement Learning


无线电操控和信号监控:


  1. Deep Reinforcement Learning Radio Control and Signal Detection with KeRLym, a Gym RL Agent


DRL 来学习做物理实验:


  1. LEARNING TO PERFORM PHYSICS EXPERIMENTS VIA DEEP REINFORCEMENT LEARNING(11.13 更新)


DRL 加速收敛:


  1. Deep Reinforcement Learning for Accelerating the Convergence Rate(11.14 更新)


利用 DRL 来设计神经网络:


  1. Designing Neural Network Architectures using Reinforcement Learning(11.14 更新)

  2. Tuning Recurrent Neural Networks with Reinforcement Learning(11.14 更新)

  3. Neural Architecture Search with Reinforcement Learning(11.14 更新)


控制信号灯:


  1. Using a Deep Reinforcement Learning Agent for Traffic Signal Control(11.14 更新)


自动驾驶:


  1. CARMA: A Deep Reinforcement Learning Approach to Autonomous Driving(12.20 更新)

  2. Deep Reinforcement Learning for Simulated Autonomous Vehicle Control(12.20 更新)

  3. Deep Reinforcement Learning framework for Autonomous Driving(12.20 更新)

二十一:其它方向

避免危险状态:


  1. Combating Deep Reinforcement Learning’s Sisyphean Curse with Intrinsic Fear (11.14 更新)


DRL 中 On-Policy vs. Off-Policy 比较:


  1. On-Policy vs. Off-Policy Updates for Deep Reinforcement Learning(11.14 更新)


注 1:小伙伴们如果觉得论文一个个下载太麻烦,可以私信我,我打包发给你。


注 2:欢迎大家及时补充新的或者我疏漏的文献。


本文转载自 Alex-zhai 知乎账号。


原文链接:https://zhuanlan.zhihu.com/p/23600620


2019-11-29 13:463083

评论

发布
暂无评论
发现更多内容

Java-GC概述

架构实战营模块1学习总结

林子钧

学习 架构实战营 模块一

ElasticSearch架构及核心概念

五分钟学大数据

ES 4月日更

架构实战营-模块1-微信业务架构&学生管理系统方案

Lane

MemVerge使得大内存应用在 Ice Lake CPU上如虎添翼

Steven Xu

redis 内存 高性能 持久化存储 kvm

4月17日,HarmonyOS开发者日将于上海启幕

Geek_283163

华为

这份阿里21年最新版Java面试手册简直无敌了,已经助我拿下五个大厂offer!

Java架构之路

Java 程序员 架构 面试 编程语言

Java多线程与并发系列从0到1全部合集!拿走不送~

钟奕礼

Java 编程 程序员 架构 面试

YouTube视频转MP3音频 (批量、高效、快捷)

科技猫

分享 教程 视频处理 youtube youtube转mp3

在小公司“混”了两年,我只认真做了五件事,如今顺利拿到天猫Offer,迈上人生的新台阶!

Java架构追梦

Java 面试 天猫Offer 成长路线图

【架构实战营】模块1作业

毛国庆

架构实战营

28次面试从未被拒,只因学了阿里P8大牛写的这份《Java技术成长笔记》

Java架构之路

Java 程序员 架构 面试 编程语言

架构实战

颜培攀

架构实战营

别再面向 for 循环编程了,Spring 自带的观察者模式就很香!

Java架构师迁哥

常垒资本石矛:寻找ToB投资中的「非共识」

ToB行业头条

SaaS tob

1TB每日仅需6元!USnap磁盘快照服务全新上线,精确到秒级恢复

UCloud技术

快照 备份

Android高级工程师进阶学习,架构师必备技能

欢喜学安卓

android 程序员 面试 移动开发

架构实战营 模块一:课后作业

Ahu

架构实战营

【业务架构训练营】模块一作业

汪大侠

2021最新中高阶Android面试题总结,成功入职阿里

欢喜学安卓

android 程序员 面试 移动开发

肝了一个月,终于完成了24万字的Java面试手册!

码农之家

Java 编程 程序员 互联网 面试

2021最新拼多多Java面试题(现场五面),全面涵盖Java高级到高并发

钟奕礼

Java 编程 程序员 架构 面试

Java面试题全部196题合集:涵盖大厂必考的9大技术点

钟奕礼

Java 编程 程序员 架构 面试

架构实战营模块1作业

林子钧

作业 架构实战营 模块一

带你全面认识CMMI V2.0(五)——改进

IPD产品研发管理

项目管理 管理 软件 CMMI

模块一:课后作业

冷酷小绵羊

MemVerge 和百奥智汇用大内存技术加速癌症和新冠病毒的研究

Steven Xu

内存 高性能 持久化存储 I/O

阿里P9力荐Spring Boot学习笔记,一步一步学习Spring Boot,学到的不单单是基础

Java架构师迁哥

Substrate 合约书之合约综述

Patract

智能合约

全网疯传!对标阿里P5-P9的知识体系学习路线及阿里内部Java核心知识手册。

Java架构之路

Java 程序员 架构 面试 编程语言

线程池 图解

线程池

深度增强学习方向论文整理_语言 & 开发_Alex-zhai_InfoQ精选文章