写点什么

机器学习,像极了一场足球比赛

  • 2021-03-04
  • 本文字数:2047 字

    阅读完需:约 7 分钟

机器学习,像极了一场足球比赛

本文最初发表于 Towards Data Science 博客,经原作者 Renato Boemer 授权,InfoQ 中文站翻译并分享。


如果向没有技术背景的人解释清楚机器学习,可能有些难度。


如果你是一名专业数据科学家,你会经常被问到一个问题 —“你这个工作是干什么的?”如果向没有技术背景的人解释清楚这个问题,可能有些难度。


卡内基梅隆大学著名计算机科学家 Tom Mitchell 教授给机器学习下的定义是


“一种计算机程序,它从经验 E 中学习某些类别的任务 T 和性能指标 P,如果它在任务 T 中的性能(用 P 来衡量) 随着经验 E 而提高。”


坦率地说,在任何非正式对话中,引用这种专业性很强的定义可能很难让对话继续下去。


而作为一个数据科学家,又经常需要向非技术性的受众解释技术术语。因此,每当我发现自己在解释自己的工作时,我就用到了我的哲学老师曾经用到的同样的技巧:足球类比。即便人们不喜欢足球,他们也可以以某种方式把机器学习和足球运动及规则联系在一起。


但愿足球的比喻有助于你理解或向其他人解释机器学习。

球员(数据)


显然,没有球员,就没有足球赛。无论你是在温布利球场进行职业级别的球赛,还是在街上和朋友们一起踢球,这都不重要。没有球员,那些地方只是一个空旷的足球场和街道。


对于机器学习来说,数据就像球员,没有数据,一切都无从下手。不过,并非所有数据集都是相同的,就像球员一样,C 罗和梅西是伟大的球员,他们超越了人们对于一场精彩的足球比赛的期待。但如果让我上场的话,这就不可能了。因此,优秀的球员才会有出色的表现。


类似地,数据科学中也有一句名言:“垃圾进,垃圾出”。无论你的编程技术多么精湛,或者你的数学知识多么渊博,但如果没有有用的数据集,你的机器学习项目很可能会使你的团队失望。

足球经理(数据准备)


一支足球队的成功离不开足球经理。即便拥有挑选顶级球员的豪华条件,英格兰国家足球队自 1966 年以来也再没有赢得过世界杯。足球经理负责决定谁将参加世界杯。同时,他也负责为球员提供指导,指导日常训练。这个过程很花时间,如果不能很好地完成,球队就不能为下届冠军做好准备。


据一份研究报告称,约 80% 的数据科学家会做数据准备和数据清理。数据专业人员必须将他们的数据集转化为机器学习模型可以学习的格式(例如,将数据归一化,处理空白值等)。不论对于数据科学家还是足球专业人士,这些都不是最令人兴奋的事情。

足球战术(机器学习模型)


球队要想夺冠,就必须根据每个对手的情况改变战术。举例来说,如果美国国家足球队面对四届世界冠军德国国家足球队,他们很有可能建立一个强大的防守体系。若美国队对阵冰岛足球队,则可采用强攻策略,采用不同的进攻战术。因此,一支经过良好训练的球队,只要做到战术合理,那么在 90 分钟内,很有可能进球并取得胜利。


机器学习从业者必须根据给定的特定数据集和期望的结果来决定要应用哪种算法或模型。举例来说,机器学习专业人员根据问题来选择预测模型:分类模型是关于预测标签的,而回归模型是关于预测数量的。因此,熟知哪些规则和技术是项目成功的关键。如,K- 最近邻、逻辑回归、朴素贝叶斯分类器和随机森林是一些常用的机器学习模型。

足球设备(硬件和软件)


足球在不同位置需要不同的装备和训练。举例来说,只有门将才能用手触球。因此,他们需要(特殊的)手套和独特的体能训练,而其他人则需要来回奔跑 90 分钟,并尝试用额头进球得分。另外,拥有强大赞助商的团队可以雇佣营养师、医学专家甚至数据科学家来分析表现数据。归根结底,设备和独特的专业人才能够帮助一支球队在世界杯上获得成功。


类似地,要处理一个很小的数据集(1000 行×5 列)来创建一些图形,这些图形可以在标准笔记本电脑上使用 Microsoft Excel 生成,但如果要从多个服务器上提取数据并处理数百万行的数据,就需要特定的编程语言 Python 和具有非凡计算能力的高性能设备。



不同联盟(领域专长)


不管你走到哪儿,可能总会有人在踢足球,可能是孩子 / 成人,男人 / 女人,室内 / 业余,线上 / 户外或业余 / 职业等。这都不重要,总有人在玩。另外,你会遇到技术水平的巨大差异。


足球不会因为不同的技术水平和比赛类型而存在缺陷,这正是足球运动的多样性和包容性。每种技术水平或竞赛类型都可以满足某种特殊的需求。有些人喜欢在户外的草地上踢球,而另一些人则喜欢在网上与朋友一起踢球。这也没关系,这些人专攻某一种类型的足球。


机器学习就像足球一样。不同的专业人员在各自的领域拥有不同的专长和工作,例如,商业和企业领域(金融市场);学术和技术领域(在大学研究开发新算法)。

总结


当你正在成为机器学习专家时,你必然会向来自不同背景的人解释你的工作。这个简单有效的类比可以帮助你让他们更容易理解机器学习。关注受众对足球的普遍印象,并与机器学习建立易于记忆的联系。但愿现在,你有了一个有趣的类比,来比喻和通俗解释那些日常生活中的复杂话题。


作者介绍:


Renato Boemer,企业家,毕业于剑桥大学。爱好数据科学和人工智能。


原文链接:


https://towardsdatascience.com/machine-learning-is-like-football-e3e3ace8ce7a

2021-03-04 10:302008
用户头像
刘燕 InfoQ高级技术编辑

发布了 1112 篇内容, 共 580.1 次阅读, 收获喜欢 1981 次。

关注

评论

发布
暂无评论
发现更多内容

智能合约dapp系统开发流程技术

开发微hkkf5566

后端服务性能测试能力建设101

RingCentral铃盛

typescript 后端 ansible node,js SDET

一文辨析 Java、JSP、JavaScript

攻城狮杰森

Java JavaScript jsp 7月月更

开放原子开源基金会OpenHarmony工作委员会主席侯培新寄语OpenAtom OpenHarmony分论坛

OpenHarmony开发者

OpenHarmony

一文详解Nodejs中fs文件模块与path路径模块

timerring

node.js path FS 签约计划第三季

元宇宙GameFi链游系统开发NFT技术

薇電13242772558

NFT 元宇宙 链游

Python 高阶

Damon

7月月更

Okaleido生态核心权益OKA,尽在聚变Mining模式

小哈区块

微服务化解决文库下载业务问题实践

百度Geek说

Java 微服务

大咖观点+500强案例,软件团队应该这样提升研发效能!

万事ONES

程序员培训学习后好找工作吗?

小谷哥

向日葵资深产品总监技术分享:如何在AD域环境下应用

贝锐

安全 AD域 远程控制 向日葵

议程速递 | 7月27日分论坛议程一览

kk-OSC

开源 开放原子全球开源峰会

JAVA编程规范之ORM 映射

源字节1号

后端技术

数据中台建设(二):数据中台简单介绍

Lansonli

数据中台 7月月更

武林头条-建站小能手争霸赛

hum建应用专家

数据库 wordpass

7月27日19:30直播预告:HarmonyOS3及华为全场景新品发布会

HarmonyOS开发者

HarmonyOS

SAP ABAP Netweaver 容器化的一些前沿性研究工作分享

汪子熙

SAP abap Netweaver Docker 镜像 7月月更

基于 Flink CDC 实现海量数据的实时同步和转换

Apache Flink

大数据 flink 编程 流计算 实时计算

Linux 常用命令(二)

五分钟学大数据

Linux 7月月更

SAP ABAP 守护进程的实现方式

汪子熙

操作系统 守护进程 SAP abap 7月月更

Happens-Before原则深入解读

转转技术团队

Java JVM java 并发

社区点赞业务缓存设计优化探索

得物技术

缓存 后端 重构 方案设计

Python图像处理丨两种实现图像形态学转化运算

华为云开发者联盟

Python 人工智能 图像处理 图像

百问百答第48期:极客有约——可观测体系的建设路径

博睿数据

可观测性 智能运维 博睿数据 性能监测 极客有约

10 个 Reduce 常用“奇技淫巧”

掘金安东尼

JavaScript 前端 7月月更

Flink 在 讯飞 AI 营销业务的实时数据分析实践

Apache Flink

大数据 flink 编程 流计算 实时计算

web前端开发培训课程如何学习

小谷哥

Python爬虫,JS逆向之 webpack 打包站点原理与实战

梦想橡皮擦

Python 爬虫 7月月更

浅谈低代码技术在物流运输平台中的搭建与管理

王平

机器学习,像极了一场足球比赛_文化 & 方法_Renato Boemer_InfoQ精选文章